CDD: 547

PREPARAÇÃO DE DIÓXIDO DE ESTANHO VIA DECOMPOSIÇÃO DE ORGANOMETÁLICOS

THE PREPARATION OF TIN DIOXIDE (SnO₂) THROUGH THE DECOMPOSITION OF ORGANOMETALLICS

AUGUSTO CELSO ANTUNES¹ SANDRA REGINA M. ANTUNES¹ SIDNEI ANTÔNIO PIANARO² ELSON LONGO³ JOSÉ ARANA VARELA⁴ RENATA DINNIES SANTOS⁵

1 Professor do Departamento de Química da UEPG

2 Professor do Departamento de Engenharia de Materiais da UEPG
3 Professor do Departamento de Química da Universidade Federal de São Carlos
4 Professor do Instituto de Química da Universidade Estadual Paulista/Araraquara
5 Aluna de Iniciação Científica, bolsista do Programa CNPq/PIBIC

RESUMO

Neste trabalho foram obtidos organometálicos por meio da interação química do Sn²⁺ com os seguintes ácidos: oxálico, tartárico e cítrico, em meio aquoso. Estes sais de ácidos carboxílicos foram utilizados como precursores do processo de preparação de dióxido de estanho.

A estabilidade teórica da formação dos organometálicos foi avaliada por meio de cálculos teóricos mecânico-quânticos, utilizando-se o método MNDO (Modified Neglect of Diatomic Overlap). Os pós foram caracterizados pelas

PUBLICATIO UEPG - Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1):91-101, 2000.

seguintes técnicas: espectroscopia de absorção na região do infravermelho, difração de raios X, adsorção e dessorção de N₂ pelo método BET e análise térmica (DTA e TG). Pela análise dos resultados pode-se verificar que os orgonometálicos obtidos estão na forma anidra e suas decomposições ocorrem com a eliminação de CO₂ e H₂O, formando como produto final SnO₂. Portanto, o citrato, tartarato e o oxalato de estanho (II) são fontes alternativas de obtenção de SnO₂.

Palavras-chave: dióxido de estanho, preparação, organometálicos

1. Introdução

O estudo das propriedades de materiais cerâmicos constitui uma área de grande interesse no campo da pesquisa científica. Este interesse está relacionado com o desenvolvimento de materiais tecnológicos para aplicações diversas.

O dióxido de estanho é um dos materiais cerâmicos que apresenta potencial de aplicabilidade tecnólogica, seja como eletrodo inerte, sensor, catalisador ou varistor; sendo que cada produto desenvolvido requer propriedades físico-químicas distintas ^[1-8].

Muitos fatores podem alterar as propriedades finais das cerâmicas, mais especificamente, das cerâmicas eletrônicas. Um destes fatores é o processo de síntese do pó. O processo de síntese pode alterar a morfologia, a distribuição de tamanho de partículas, as fases cristalinas, a reatividade, bem como, as fases no produto final.

Dentre os métodos descritos na literatura ^[3, 5, 6 e 8] de obtenção de dióxido de estanho, podemos citar: sol-gel; oxidação de estanho metálico, co-precipitação de sais solúveis e precipitação homogênea.

Neste trabalho desenvolveu-se um método alternativo de obtenção de dióxido de estanho por meio da preparação dos seguintes organometálicos: citrato, oxalato e tartarato de estanho (II) e, posterior decomposição dos mesmos por calcinação.

2. Materiais e métodos

Para a obtenção dos sais de ácidos carboxílicos foram utilizados os seguintes reagentes: cloreto de estanho (II) dihidratado; ácidos: cítrico,

oxálico e tartárico; hidróxido de amônio e álcool etílico. Empregou-se, nas referidas preparações, reagentes de grau analítico.

A primeira etapa do processo de preparação foi a dissolução de $SnCl_2.2H_2O$ em soluções previamente preparadas de ácidos α -hidroxilados (ácido tartárico e ácido cítrico) e de um diácido (ácido oxálico) com agitação magnética constante e aquecimento.

Em seguida, adicionou-se NH_4OH em concentração de 2 mol/L até a precipitação completa dos organometálicos. Esta precipitação ocorre no intervalo de pH entre 2 e 3. Os precipitados foram separados da solução por filtração a vácuo, seguido de lavagem com álcool etílico P.A.

Estes organometálicos preparados foram calcinados a 700 °C por 4 horas.

A possibilidade de formação dos organometálicos foi avaliada por meio de cálculos teóricos mecânico-quânticos. O método utilizado foi o MNDO (Modified Neglect of Diatomic Overlap), implementado no pacote de programas semiempíricos MOPAC 5.0 (Maslowja).

A avaliação microestrutural foi realizada pela técnica de difração de raios X (difratômetro de pó, de ânodo rotatório Rigaku-Rotaflex, modelo RU 200-B).

As freqüências de vibração, das ligações químicas nos organometálicos, foram caracterizadas por espectroscopia de absorção na região do infravermelho (FTIR-BOMEM-MICHELSON 102).

A decomposição dos organometálicos foi avaliada por termogravimetria (TG) e análise térmica diferencial (DTA) (Equipamento NETZCH STA-409), com taxa de aquecimento de 10^oC por minuto e atmosfera de ar sintético.

3. Resultados e discussão

A adição de NH_4OH na concentração de 2 mol/L, nas soluções previamente preparadas de $SnCl_2 2H_2O$ e, os ácidos α -hidroxilados (ácidos tartárico e cítrico) e o diácido (ácido oxálico) produz as reações (1), (2) e (3):

$$SnCl_{2}+C_{4}O_{6}H_{6}+2NH_{4}OH \rightarrow Sn(C_{4}O_{6}H_{4})_{(s)}+2NH_{4}Cl+2H_{2}O$$
(1)

$$SnCl_2 + C_6O_7H_8 + 2NH_4OH \rightarrow Sn(C_6O_7H_6)_{(s)} + 2NH_4Cl + 2H_2O$$
 (2)

PUBLICATIO UEPG - Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1):91-101, 2000.

$$SnCl_2 + H_2C_2O_4 + 2NH_4OH \rightarrow Sn(C_2O_4)_{(s)} + 2NH_4Cl + 2H_2O$$
(3)

Pela análise dos resultados teóricos, gerados pelos cálculos mecânico-quânticos, nota-se que o átomo de estanho, nos três casos, produto das reações 1,2 e 3 está ligado a dois oxigênios vizinhos. Ocorre a formação de anéis estáveis, ilustrados na Figuras 1a, 1b e 1c, com seis átomos ligados no caso do tartarato de estanho (reação 1) e cinco átomos ligados para os outros dois quelatos estudados (reações 2 e 3), respectivamente.

As densidades eletrônicas, calculadas para os átomos de estanho e oxigênio vizinhos, são de carga positiva próximas de um e, negativas no intervalo de 0,53 a 0,62, respectivamente. As distâncias médias Sn-O cal-

culadas são de 1,96 $\stackrel{\circ}{A}$, portanto, da ordem de ligações simples.

A decomposição dos organometálicos foi acompanhada por termogravimetria e análise térmica diferencial (DTA). De acordo com a literatura, picos endotérmicos abaixo de 200 °C são característicos de dessorção de água de cristalização de organometálicos (NAKAMOTO). Este efeito não foi notado em nenhuma das amostras analisadas, sugerindo que os materiais se encontram na forma anidra. Nas Figuras 2 e 3, estão colocados os resultados das análises térmicas. No intervalo de 250 a 500°C aparecem picos exotérmicos com perda de massa associados à eliminação de CO₂ e água. As reações envolvidas neste processo são dadas abaixo:

Tartarato de estanho:

$$2Sn(C_4O_6H_6)_{(s)} + 7O_2 \rightarrow 2SnO_{2(s)} + 8CO_2 + 6H_2O$$
(4)

Citrato de estanho:

$$\operatorname{Sn}(C_6O_7H_6)_{(s)} + 5O_2 \longrightarrow \operatorname{Sn}O_{2(s)} + 6CO_2 + 3H_2O$$
(5)

Oxalato de estanho:

$$\operatorname{Sn}(C_2O_4)_{(s)} + O_2 \longrightarrow \operatorname{Sn}O_{2(s)} + 2\operatorname{CO}_2$$
(6)

Nessas condições, as decomposições dos sais: tartarato, citrato e oxalato de estanho (II), reações 4, 5 e 6, respectivamente, eliminam moléculas de dióxido de carbono e água. Na termogravimetria dos três organometálicos é notada uma região de ganho de massa, sendo este efeito mais acentuado nas amostras de oxalato de estanho (II). Esta etapa inter-

PUBLICATIO UEPG - Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1): 91-101, 2000.

mediária de acréscimo de massa pode estar relacionada à formação de SnO e, posteriormente, oxidação com oxigênio contido no ar sintético empregado. Este efeito é mostrado na reação (7):

$$\operatorname{SnO}_{(s)} + 1/2O_2 \longrightarrow \operatorname{SnO}_{2(s)}$$
 (7)

Os espectros de absorção na região do infravermelho dos sais: tartarato, citrato e oxalato de estanho (II) (Figura 4 e Tabela 1), indicam que os modos de estiramento e as deformações OH presentes na região de 3340 e 1600 cm⁻¹, respectivamente, são referentes às vibrações OH da parte orgânica dos complexos (PIANARO et al.; THORTON & HARRISON). As bandas na região de 1525 cm⁻¹ podem ser atribuídas ao estiramento assimétrico das ligações, COO⁻. Na região entre 1431 e 1422 cm⁻¹, as bandas são resultantes dos estiramentos simétricos COO⁻ e em 1380 a 1370 cm⁻¹ são atribuídas aos modos de deformação das vibrações COH. O estiramento da ligação C-C nos três espectros estão localizadas na região de 860 a 900 cm⁻¹. Os modos de estiramento e deformação das ligações O-Sn-O situamse em 620-640 e 310-340 cm⁻¹, respectivamente(PIANARO et al.; THORTON & HARRISON).

Atribuições	cm^{-1}
δ ΩSn- Ω	310-340
00510	510 510
v Sn-O	620-640
v C-C	860-900
δCOH	1380-1370
v _s COO	1431-1422
v _{as} COO	1525
v/δ OH	3340-1600

Tabela 1 – Atribuições tentativas das bandas nos espectros de absorção na região do infravermelho dos sais: tartarato, oxalato e citrato de estanho (II).

PUBLICATIO UEPG – Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1):91-101, 2000.

A difração de raios X efetuada nos precursores organometálicos antes da calcinação (Figura 5) mostrou uma cristalinidade significativa nos três casos, sendo que os padrões para tartarato e oxalato de estanho (II) foram comprovados com os padrões contidos no programa JCPDS (Fichas ASTM 14-0743 e 1-0529), oxalato e tartarato de estanho (II), respectivamente). Entretanto, o padrão para citrato de estanho (II) não consta na literatura consultada.

De acordo com os difratogramas de raios X das amostras calcinadas a 700 °C por 4 horas (Figura 6), foi possível verificar que o SnO_2 cristaliza com a mesma estrutura (tetragonal, tipo rutilo - TiO₂) nas três amostras analisadas.

4. Conclusões

A obtenção dos organometálicos, por este processo de síntese pode ser considerado rápido, simples e reprodutível. Estes sais, tartarato, citrato e oxalato de estanho (II), podem ser utilizados como precursores do processo de preparação de SnO_2 , de duas maneiras distintas: calcinados diretamente e/ou utilizados em etapas intermediárias de algum processamento cerâmico (por exemplo: via polimérica) a partir dos respectivos sais e, deste modo obter como produto final um material puro ou ainda, incorporado de agentes dopantes, os quais poderão produzir características desejáveis numa possível aplicação deste material.

Recebido para publicação em 04/00. Aceito para publicação em 08/00.

ABSTRACT

In this work organometallics were obtained by means of the chemical interaction of Sn^{2+} with the following acids: oxalic, tartaric and citric, in an aqueous medium. These salts of carboxilics acids were used as precursors of the process to preparation of tin dioxide.

PUBLICATIO UEPG - Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1): 91-101, 2000.

The theoretical stability of the formation of organometallics was evaluated by means of quantum-mechanics theoretical calculations, by the MNDO (Modified Neglect of Diatomic Overlap) method. The powders were characterized by the following techniques: spectroscopy in the infrared area, X-ray diffraction, adsorption and dessortion of N₂ by the BET method, and thermal analysis (DTA and TG). Throug the analysis of the results it can be verified that the organometallics thus obtained were in the anidrous form and their decomposition happened with the elimination of CO₂ and H₂O, forming SnO₂ as a final product. Consequently, citrate, tartarate and tin oxalate are alternative sources for the obtention of SnO₂.

Key words: tin dioxide, preparation, organometallics

Endereço para contato: acantunes@convoy.com.br

REFERÊNCIAS

ANTON, M.; BUDY, B. The influence of rhodium on SnO₂-CO gas sensor. Sens. And Actuators B., v.18-19, 1994, p.500-501.

ANTUNES, A.C.; ANTUNES, S.R.M.; PIANARO, S.A.; ROCHA, M.R.; LONGO, E.; VARELA, J.A. Nonlinear electrical behaviour of the SnO₂.CoO.Ta₂O₅ system. J. Mat. Sc. Lett., v.17, 1998, p.577-579.

ANTUNES, S.R.M. **Contribuição ao estudo de síntese, catálise e influência da nióbia em SnO₂**. 116p. Tese (Doutorado) - Centro de Ciências Exatas, UFSCar, São Carlos, 1993.

DEMARNE, V.; ROMANOWICZ, B.; GRISEL, A.; FOURNIER, J. Domestic Gas Detection System using two SnO₂ integrated Sensors. **Sens. and Actuators B**, v.18-19, 1994, p.658-660.

HEILAND, G. Homogeneous semiconducting gas sensors. Sens. and Actuators, v.2, 1982, p.343-361.

HONORÉ, M.; LENAERTS, S.; DESMET, J.; HUYBE-RECHTS, G.; ROGGEN, J. Synthesis and Characterization of tin dioxide powders for the realization of thick-film gas sensors. **Sens. Actuators B.**, v.18-19, 1994, p.621-624.

PUBLICATIO UEPG - Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1):91-101, 2000.

KOHL, D. Surface processes in the detection of reducting gases with SnO₂-based devices. **Sens. and Actuators**, v.18, 1989.

MOPAC 5.0. QCPE Program nº 455. Indiana University, Bloomington, 1983.

MASLOWJA, J. Thermal decomposition and thermofractochomatographic studies of metal citrates. **Journal of thermal analysis**, v.29, 1984, p.895-904.

NAKAMOTO, K. **Infrared spectra of inorganic and coordination compounds.** v.1. New York Wiley, Holden Dey, San Franscisco. p. 135, 1978.

PIANARO, S.A.; BUENO, P.R.; LONGO, E. e VARELA, J. A. A new SnO₂- based varistor system. **J. mat. Sc. Lett.**, v.14, 1995, p. 692-694.

THORTON, E.W.; HARRISON, P.G. Tin oxide surfaces. Part. 1- surface hydroxyl group and the chemisorption of CO and CO_2 on SnO_2 . J. Chem. Soc., Faraday Trans. I, v.71, 1975, p.461-472.

Powder Difraction File (PDF-2) International Centre for Diffraction Data (ICDD), 1994. CD-ROM.

Figura 1 – Resultados teóricos gerados por cálculos mecânico-quânticos. a) molécula de tartarato de estanho (II); b) molécula de citrato de estanho (II) e c) molécula de oxalato de estanho (II)

PUBLICATIO UEPG - Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1): 91-101, 2000.

Figura 2 – Análise térmica diferencial dos sais: tartarato, citrato e oxalato de estanho (II)

Figura 3 – Análise termogravimétrica dos sais: tartarato, citrato e oxalato de estanho (II)

PUBLICATIO UEPG – Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1):91-101, 2000.

Figura 4 – Espectros de absorção na região do infravermelho dos sais: tartarato, citrato e oxalato de estanho (II)

Figura 5 – Difratogramas de raios X dos sais: tartarato, citrato e oxalato de estanho (II)

PUBLICATIO UEPG – Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1): 91-101, 2000.

Figura 6 – Difratogramas de raios X dos pós obtidos após a calcinação dos sais: tartarato, citrato e oxalato de estanho (II) a 700 °C por 4 horas

PUBLICATIO UEPG – Ciências Exatas e da Terra, Ciências Agrárias e Engenharias, 6 (1):91-101, 2000.