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ABSTRACT

The maximum number of two electrons integrals (2e- integrals) calculated 
in the Hartree-Fock (HF) method is given by N4, where N is the number of basis 
functions involved in the calculation. However, in real situations, this amount of 
integrals can be reduced to the range ~N3.5 to ~N2, depending on factors such as: 
the molecular structure and the basis set used in the calculation. The methodology 
presented in this work allows for anticipating the real amount of 2e- integrals 
calculated in a HF procedure to different molecular structures. The proposal is 
based on the average of the inertia moments that represent the geometry of the 
executed molecule. The molecules have been divided in 3 groups of molecular 
geometry: 3D, planar and linear. The experiments  considered molecules with 
regular and irregular geometries, in the STO-3G, 6-31G and 6-311G basis 
set. Calculations have been carried out using the GAMESS package. Results 
demonstrate a consistent behavior for the methodology proposed, as for molecules 
with regular geometry and for molecules with more irregular geometric structure. 
The results presented in this paper will allow one to estimate the demand for hard 
disk and CPU generated in the execution of a molecule with the HF procedure.

Keywords: GAMESS. HF Procedure. 2e- integrals cutoff prediction
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RESUMO

O número máximo de integrais de dois elétrons (integrais de 2e-), calcu-
lado no método de  Hartree-Fock (HF), é dado por N4, em que N é o número de 
funções de base envolvido no cálculo. Contudo, em situações reais, esta quan-
tidade de integrais pode ser reduzida para a faixa a ~N3.5 para ~N2, dependendo 
de algum fatores, tais como: a estrutura molecular e a base utilizada no cálculo. 
A metodologia apresentada neste trabalho permite antecipar a quantidade real de 
integrais de 2e- função integral obtidas em um cálculo HF para diferentes estru-
turas moleculares. A proposta é baseada na média dos momentos de inércia que 
representam a geometria da molécula. As moléculas foram divididas em 3 grupos 
de geometria molecular: 3D, planar e linear. Os experimentos consideram molé-
culas com geometria regular e irregular, nas bases STO -3G, 6-31G e 6-311G. Os 
cálculos foram feitos usando o pacote GAMESS. Nossos resultados demonstram 
um comportamento consistente para a metodologia proposta, tanto para as molé-
culas com geometria regular, quanto para as moléculas com geometria irregular. 
Nossos resultados, apresentados neste artigo, permitem estimar a  demanda de 
disco rígido e CPU gerada na execução de um cálculo HF para uma molécula.

Palavras Chave: GAMESS. Procedimento HF. Predição do corte das integrais 
de 2 elétrons

1 Introduction

The objective of the ab-initio Quantum 
Chemistry algorithms is to perform highly 
accurate calculations at the lowest computational 
demand (STROUT, 1995). In this way, different 
algorithms for the HF procedure have been 
considered in literature (CHALLACOMBE, 
1997; CHALLACOMBE, 2000; GAN, 2003; 
SCHWEGLER, 1996; SCHWEGLER, 1997; 
SCHWEGLER, 1999; SCHWEGLER, 2000; 
TYMCZAK, 2005a; TYMCZAK, 2005b). 
These proposals have the objective to reduce the 
complexity of the HF procedure, in a general 
sense.

Software tools applied to quantum chemistry 
constantly are improved and re-feed the theory 
of the area (TRUHLAR, 2000). The software 
improvements follow and also stimulate the 
constant technological advances of the computers. 
The role of the parallel computation is a common 
example of improvement in the current days and 
that makes possible executions forbidden before.

Besides producing correct algorithms, 
considering the Quantum Chemistry theory, the 
new proposals also attack the existing bottleneck in 

the HF procedures performance. These bottlenecks 
are mainly related with the CPU time and 
storage capacity. The generated demand of the 
computational devices (CPU, RAM memory, 
bus, hard disks and others) depends on factors 
as:  (1) complexity of the calculation to be carried 
out (e.g.: molecular structure and basis set), (2) 
implementation of the method (e.g.: Direct SCF 
or Conventional SCF) and (3) computational 
system (e.g.: scalar or vectorial architecture, 
sequential or parallel machine, performance of the 
communication devices and hard disks).

A question remains open, despite of the 
constant improvements in the computation: how 
to foresee the computational cost to calculate the 
energy, in HF method, of determined molecular 
structure? If the fi nal user will be able to answer 
this question, it will be possible to estimate, for 
example, if the available hard disks have capacity 
enough to store the 2e- integrals necessary to the 
simulation or if the CPU time selected for the 
execution is enough. Considering such questions 
is extremely important for the fi nal user. It is very 
possible that the HF procedure executions occupy 
Gbytes of storage space and/or delay many hours/
days of CPU time.
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The answer for the question above depends 
on different exclusive molecular parameters and, 
therefore, it is not trivial. The theoretical cost 
N4 of the HF procedure is known in literature 
(ALMLÖF, 1982). Here N is the number of basis 
functions. This value should enable to estimate the 
amount of 2e- integrals to be calculated, activity 
that dominates the computational cost of the HF 
procedure (STROUT, 1995). However, it is also 
known that the theoretical cost N4 is reduced in 
practical for ~N3.5 to ~N2, in the algorithm Direct 
SCF - DirSCF (ALMLÖF, 1982; SCHMIDT, 
1993), depending on the molecular structure and 
basis set (STROUT,  1995).

In order to determine the computational 
cost of the calculation of the energy based on HF 
method it is necessary, therefore, to determine 
previously which is the real amount of 2e- integrals 
to be calculated. In other words, how many 2e- 
integrals will be discarded in the future execution 
of one determined molecular structure?

This work aims to estimate this real amount 
of integrals to be calculated in a HF procedure, 
considering determined standards of molecular 
structures and the algorithm Conventional SCF 
- CSCF in the GAMESS package (SCHMIDT, 
1993). The geometry of the molecular structure 
to be simulated was considered to carry out this 
estimate. The metric used to represent geometry 
was the average of the molecular moment of inertia. 
The results demonstrate that this methodology is 
consistent for STO-3G, 6-31G and 6-311G basis 
set, thus it presents a trustworthy relation between 
molecular geometry and the amount of 2e- integrals 
discarded.

The methodology proposed in this work 
does not consider the effects of successive 
integrals screening realized in the iterations of 
the HF procedure; such as it is usual on DirSCF 
(SCHMIDT, 1993). The scope of this work is to 
determine the cutoff present when all 2e- integrals 
are previously evaluated, stored in disk and so they 
are used later.

This paper is organized as follow. In section 
2 the scaling properties of the HF method are 
presented. Section 3 describes the methodology 
proposed in this work, using the average of 

the inertia moment to determine the amount of 
discarded 2e- integrals. Section 4 presents the 
results obtained with this methodology. Section 
5 relates the conclusions and the perspectives of 
future works.

2 Scaling Properties of the 
Hartree-Fock Method

The Hartree-Fock method complexity was 
originally determined as N4 due to (2.1)

where     a r e  a tomic  o rb i t a l s 
(STROUT, 1995). However, a great part of the 
2e- integrals has a negligible value. It allows the 
discarding of these values in the HF equations 
evaluation. This behavior is represented by the 
Schwarz inequalities given by (2.2)

The appliance of this equation in HF 
calculations reduces the exponent scale N α . As 
the size of the molecule increases, the reduction 
becomes more signifi cant. Big molecular systems 
have a lot of atomic orbitals distant from each other. 
It causes less interaction among them (ALMLÖF, 
1982; STROUT, 1995).

The infl uence of Schwarz inequalities also 
varies depending on the algorithm that implements 
uses the HF procedure. The impact is greater 
when these algorithms evaluate 2e- integrals in 
successive iterations, hence successive cuts in 
integrals amount are made. Schwarz inequalities 
gains are comparatively smaller when 2e- integrals 
are formerly evaluated, temporarily stored in disk 
and then used. This happens because integrals 
amount are discarded just on its evaluation, so the 
discarding occurs just once.

Different software tools apply these ideas. 
Gaussian (FRISCH, 2004), Dalton (HELGAKER, 
2001), NWChem (KENDALL, 2000), Spartan 
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(SPARTAN), Turbomole (AHLRICHS, 1989) and 
GAMESS (SCHMIDT, 1993) are some examples 
of these tools.

Different authors have been studying the 
properties of scalability inherent to HF methods. 
Almlöf et al (ALMLÖF, 1982), in a pioneering 
work in 1982, used N2 to study 2e- integrals 
behavior and explored integrals screening effects 
on HF methods for a series of nitrogen linear 
molecules up to 16 atoms. They observed the 
decreasing of 2e- integrals fraction as the molecule 
size increases. They also made a comparative study 
of three nitrogen isomers, each of them composed 
by 8 atoms (a linear molecule, a planar ring and 
a cubic isomer), observing that the fraction of 2e- 
integrals used is greater for the large dimensional 
order molecules (cubic isomer), following by 
planar ring and linear molecule.

Computers processing capacity has increased 
in last decades. Jointly, programs effi ciency follows 
this increase due to calculation methodology 
improvements (AIKENS, 2004; ALEXEEV, 2002; 
BOLDING, 2000; CHOI, 2003; FAMULARI, 1998; 
FEDOROV, 2004; GAN, 2003; GLAESEMANN, 
1998). In 1995, Strout and Scuseria (STROUT, 
1995) presented details about effects of integrals 
screening on the scaling properties of HF methods 
in large molecular systems treated in (ALMLÖF, 
1982). They have studied two molecular system 
models: one of them composed of graphitic 
sheets, of bi-dimensional features, and another 
one composed of diamond like three-dimensional 
structures. Graphitic sheets follow the homologous 
sequence C

6n
2H

6n
 while diamond like structures 

follow the sequence                 . The structures 
have been studied using STO-3G, DZ e DZP. 
Authors verify 2e- integrals amount and CPU 
time for STO-3G basis set, when executing each 
molecular structure. These executions considered 
the fi rst HF iteration.

They showed the scaling exponent behavior 
among molecule pairs used. This exponent, called 
here β , was defi ned as:

   

what leads to the relation:
               

where I is integrals number and N is basis 
functions number involved in a HF calculation for 
each molecule.

The most signifi cant result is the scaling 
asymptotic behavior in the limit of large molecules. 
To graphitic sheets the obtained value was 2.1 
and to diamond like structures it was 2.4. In all 
the cases, integrals screening based on integrals 
count reduced signifi cantly the scaling exponent 
to a value close to ~2.

HF procedure has other time-consuming 
steps, besides 2e- integrals evaluation (STROUT, 
1995). Fock matrix diagonalization is an example 
of a calculation done during HF procedure and 
scaling as N3. (STROUT, 1995) have analyzed 
the proportionality of these time-consuming steps 
in order to prove the Fock matrix diagonalization 
contribution to HF procedure total wall clock. 
Their results showed that for large molecules the 
diagonalization time is less than two percent of 
total CPU time, while integrals calculation, in a 
consistent way, dominate the total time.

Results presented by (STROUT, 1995) show 
the importance of 2e- calculation in HF method. 
However, this study does not point out how to 
estimate the 2e- integrals cutoff scaling, taking in 
account different kinds of molecular structures and 
different basis set. In other words, there is no way to 
estimate the value of  β  without executing at least 
one HF cycle in order to determine 2e- integrals 
amount generated in the basis set combining with 
the molecular structure being simulated.

3 Using the Inertia Moment 

 Works described in the last section 
demonstrate that mathematical bounds computed 
with the Schwarz inequality screen and eliminate 
four-center two electron integrals smaller than a 
threshold (STROUT, 1995). However, it is not 
known how to quantify previously the real number 
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of integrals with more precision, according to both 
number of basis function and peculiar molecule 
to be simulated. This is essential to anticipate 
the algorithm complexity, which is responsible 
to compute the Hartree-Fock energy in the 
GAMESS.

 Table 1 shows a roll of distinct molecules 
and their respective 2e- integrals amount, 
considering 6-31 basis set. These molecules were 
grouped at: (a) three-dimensional, (b) planar and 
(c) linear. This classifi cation follows the Almlöf et 

al. proposal (ALMLÖF, 1982), used by (STROUT, 
1995) and allows the verifying that the amount 
of the eliminated 2e- integrals is actually higher 
for larger molecules (see last column). Third 
and fourth columns of the Table 1 show that the 
three-dimension group requires more integrals 
to be evaluated when compared to planar group, 
considering a proportional molecule size and a 
fi xed screening threshold. The planar group itself 
requires more integrals than linear ones.

Molecule Cartesian

Integrals

Amount

(Peak)

Integrals 

Amount

(Real)

Axis X                  

Inertia 

Moment

Axis Y              

Inertia 

Moment

Axis Z            

Inertia

Moment

Inertia

Moments 

Average

Integrals

Amount

Index

C20 180 131220000 110959278 657.779 657.779 657.779 0.6578 0.8456

C24 216 272097792 208410000 930.973 930.976 1049.734 0.9706 0.7659

C26 234 374777442 273210000 1198.012 1198.009 1016.298 1.1374 0.7290

C32 288 859963392 546123744 1564.446 1784.801 1784.805 1.7114 0.6351

C36 324 1377495072 765225000 2297.974 2297.976 1909.063 2.1683 0.5555

C50 450 5125781250 1846036324 3976.07 3976.067 4571.637 4.1746 0.3601

C60 540 10628820000 2871443565 5938.251 5938.251 5938.251 5.9383 0.2702

C70 630 19691201250 3875575000 7421.579 8585.664 8594.906 8.2007 0.1968

C80 720 33592320000 4935675000 10796.679 10823.36 10866.172 10.8287 0.1469

tube9x0 810 53808401250 4784685000 13541.318 16706.462 16706.462 15.6514 0.0889

tube5x5 900 82012500000 6374865000 13943.243 21943.367 21943.372 19.2767 0.0777

tube10x0 900 82012500000 5480295000 20309.461 20309.461 18539.342 19.7194 0.0668

tube11x0 990 120075000000 6276855000 24464.076 24464.076 24640.614 24.5229 0.0523

Table 1 (a)

Table 1 – Relationship among distinct molecule types considering: maximal amount integrals, real amount integrals (in fact) 
evaluated and arithmetic-average of the inertia-moments X, Y and Z axis. Hartree-Fock results with an 6-31G basis 
set and a 10

-10
 hartree integral screening threshold. Table 1 (a) groups molecules with tri-dimensional structure; 

Table 1 (b) binds molecules with planar structure and Table 1 (c) join linear ones.
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Molecule Cartesian

Integrals

Amount

(Peak)

Integrals 

Amount

(Real)

Axis X                  

Inertia 

Moment

Axis Y              

Inertia

Moment

Axis Z            

Inertia

Moment

Inertia 

Moments

Average

Integrals 

Amount

Index

C024H12 240 414720000 91891108 1476.37 2952.745 1476.372 1.9685 0.2216

C054H18 522 9280941282 656138426 7425.74 14851.48 7425.74 9.9010 0.0707

C096H24 912 86474760192 2285019245 24008.771 24008.771 48017.543 32.0117 0.0264

C150H30 1233 288909830440 4307400000 45566.435 49412.205 94978.639 63.3191 0.0149

ST 1 141 49406770 12405000 174.8 1954.922 2129.722 1.4198 0.2511

ST 2 278 746602082 70680000 1667.401 7460.06 9127.461 6.0850 0.0947

ST 3 415 3707681328 187830000 7546.03 9454.102 17000.042 11.3334 0.0507

ST 4 552 11605565952 362790000 10114.626 19914.454 30029.079 20.0194 0.0313

ST 5 689 28170003480 588345000 15881.486 32119.028 48000.514 32.0003 0.0209

ST 6 826 58187567522 860745000 18376.166 55211.922 73582.089 49.0567 0.0148

ST 7 963 107501657770 1186680000 22646.283 84533.421 107179.704 71.4531 0.0110

ST 8 1100 183012500000 1552095000 25475.966 125582.391 151058.357 100.7056 0.0085

Table 1 (b)

Molecule Cartesian

Integrals 

 Amount 

(Peak)

Integrals 

Amount 

(Real)

Axis X                  

Inertia 

Moment

Axis Y              

Inertia

Moment

Axis Z            

Inertia

Moment

Inertia

Moments

Average

Integrals

Amount

Index

PAH 5 226 326094722 53407147 378.47 4264.73 4643.21 3.0955 0.1638

PAH 6 266 625801442 77464180 451.36 7016.48 7467.84 4.9786 0.1238

PAH 7 306 1095962562 105564358 524.24 10750.46 11274.70 7.5165 0.0963

PAH 8 346 1791490082 139350678 588.39 15348.70 15937.09 10.6247 0.0778

PAH 9 386 2774976002 175805880 659.68 21387.37 22047.05 14.6980 0.0634

PAH 10 426 4116692322 216111579 730.98 28831.86 29562.84 19.7086 0.0525

Ppv02 150 63281250 14740941 202.10 1917.41 2119.51 1.4130 0.2329

Ppv03 234 374777442 41679123 278.21 7735.67 8013.88 5.3426 0.1112

Ppv04 318 1278257922 79897863 415.98 19742.05 20158.03 13.4387 0.0625

Ppv05 402 3264481602 130164851 522.92 40250.09 40773.02 27.1820 0.0399

Ppv06 486 6973568802 191671635 629.86 71492.38 72122.24 48.0815 0.0275

Ppv07 570 13195001250 264129359 736.80 115721.72 116458.53 77.6390 0.0200

Ppv08 654 22867622082 347291656 843.74 175190.93 176034.68 117.3565 0.0152

Ppv09 738 37079635842 440803634 950.69 252263.09 253213.77 168.8092 0.0119

Ppv10 822 57068608482 544969890 1057.62 348860.21 349917.83 233.2786 0.0095

Ppv11 906 84221467362 659156710 1164.56 467565.91 468730.47 312.4870 0.0078

Ppv12 990 1.20075E+11 783349636 1271.69 610531.35 611803.04 407.8687 0.0065

Table 1 (c)
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The values in third column (Integrals 
Amount Peak) are obtained from equation 3.1 
(SCHMIDT, 1993),

      

where N is the cartesian amount. The 
columns “Integrals Amount Real” and  “Inertia 
Moments” (X, Y and Z) were obtained directly from 
GAMESS, by means of empirical experiments. The 
Integrals Amount Index is a normalized value (0 ≤ 

index ≤ 1) and it is determined from:

An index whose value is 0 represents a 

100% cutoff and a number 1 represents that there 

was no cutoff somehow. This index can estimate 

the 2e- integrals real amount evaluated in fact for 

molecule, when applied to 2e- integrals maximum 

amount (from Eq. 3.1).

 The starting point of this work was to 

analyze the molecular geometry, in order to 

consider the molecular spatial structure. Therefore, 

the arithmetic average M of the molecules moment 

of inertia X, Y and Z was joined to the 2e- integrals 

cutoff. Table 1 shows in its two last columns that 

the growth of the inertia moments average is 

proportional to the increase of the integrals that are 

removed from energy evaluation, when the three 

molecular groups are considered. This integrals 

cutoff growth is asymptotic, never exceeding the 

100% limit.

 Equations 3.3, 3.4 and 3.5 use the inertia 

moments average in order to determine the 2e- 

integrals cutoff. Each equation represents one 

of the three molecular groups cited previously, 

respectively: three-dimensional, planar and 

linear.

where M is arithmetic average from X, Y 

and Z inertia moments. All these three equations 

provide a normalized index, likewise made clear 

for Integrals Amount Index (last column of the 

Table 1). Again, this index approximates the 

2e- integrals amount that will be evaluated for 

molecule in fact, when applied on 2e- integrals 

maximum amount (Eq. 3.1).

 The equation model above is known as 

“inverse regression”. It was defi ned empirically, 

comparing percentage of the 2e- integrals discarded 

to inertia moments average. This study considered 

the 6-31basis set.

    

 

a, b and c in 3.6 were defined for each 

molecular group, by means of iterative method 

for non-linear curve fi tting. The GRACE software 

tool was used to obtain these coeffi cients (GRACE, 

2009).

The three equations (3.3-3.5) are necessary to 

estimate the cutoff because the geometry infl uence 

causes specifi c absolute values inside each group, 

in despite of inertia moment be consistent at the 

three molecular groups. Empirical results in Table 

1 can show this feature.

4 Results and Discussion

 Results described in this section demonstrate 

the modeling effi ciency when compared to empirical 

8
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(real) execution on GAMESS (SCHMIDT, 1993). 

Evaluations use the three molecular groups cited 

previously (three-dimensional, planar and linear) 

and also a fourth extra group. Molecules presented 

in the three fi rst groups were chosen to allow the 

modeling scalability analysis, in face to gradual 

increase of molecular size. Fourth molecules 

group presents distinct-geometry features when 

comparing to other ones. This difference allows 

to show how ample the reach of this work is. The 

evaluations were done without symmetry and 

consider fi rst the 6-31G basis set. STO-6G and 

6-311G basis set were also considered in order to 

demonstrate the cutoff-modeling behavior with 

other basis set.

 Three-dimensional group used the following 

molecules: fullerenes and nanotubes (Figs. 1 up to 

4).

Figure 1 – Fullerene (C20 -  20 carbon atoms)

Figure 2 – Fullerene (C80 -  80 carbon atoms)

Figure 3 – Nanotube (5x5 – 100 carbon atoms)

Figure 4 – Nanotube (11x0 – 100 carbon atoms)

 Planar group used the molecules: graphitic 

sheets (Figs. 5 up to 6) and poly(3- β -steryl-

thiophene) (ST)(Figs. 7).

Figure 5 – C024H12 graphitic sheet
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Figure 6 – C150H30 graphitic sheet

Figure 7 – poly(3- β -steryl-thiophene) (ST) model
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Linear group considered the molecules: Polycyclic Aromatic Hydrocarbons (PAH’s from 05 up 

to 10 units – Fig. 8) and a conjugated polymer: Poly-p-Phenylene Vinylene (PPV’s from 02 up to 12 

units – Fig. 9).

Fourth group was composed by: β -carotene, chlorophyll, non-planar 12 units polyanilin oligomer 

(PAN12), streptomycin and taxol – an anti-tumoral drug (Figs. 10 up to 14). 

Figure 8 – Linear PAH molecules used in this work.

Figure 9 – PPV oligomers model.



Publ. UEPG Ci. Exatas Terra, Ci. Agr. Eng., Ponta Grossa, 14 (2): 79-97, ago. 2008 

89

Figure 10 – β -carotene : one of the two forms of the dimer of vitamin A (40 Carbons, 52 Hydrogens)

Figure 11 –  Chlorophyll a: the molecule that absorbs sunlight and uses its energy to synthesise carbohydrates from CO2 and 

water (55 Carbons, 5 Oxygens, 1 Magnesium, 4 Nitrogens, 72 Hydrogens)

Figure 12 –  PAN12: a non-planar 12 units polyanilin oligomer (72 Carbons, 11 Nitrogens and 61 Hydrogens)
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Figure 13 –  Streptomycin: a antibiotic (21 Carbons, 12 

Oxygens, 7 Nitrogens, 41 Hydrogens);

Figure 14 –  Taxol: a anti-tumoral drug; (47 Carbons, 14 

Oxygens, 1 Nitrogen, 51 Hydrogens);

Tables 2 a, 2 b, 2 c e 2 d show the results 

from equations 3.1, 3.2 and 3.3, when considering 

6-31G basis set. Values presented in Table 2 

allow to compare the real amount of 2e- integrals 

obtained from GAMESS execution (third column) 

to theoretical amount of them (last column). 

Theoretical amount of 2e- integrals was evaluated 

by means of direct multiplication of 2e- integrals 

peak amount (second column) by respective cutoff 

(sixth column). The cutoff uses the arithmetic 

average of the inertia moments and it is obtained 

according to description done in the previous 

section.
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Table 2 – List of distinct molecules comparing the Integrals Amount Real (empirical) with the 

Integrals Amount Theoretical, this obtained by means of modeling proposal. The results of cutoff (Eq. 

3.3, 3.4 and 3.5) are also showed. Hartree-Fock results were obtained with a 6-31G basis set and a 10
-10

 

hartrees integral screening threshold. The scale of the inertia-moment’s averages was reduced dividing 

it by 106. Table 2 (a) groups molecules with tri-dimensional structure; Table 2 (b) binds molecules with 

planar structure, Table 2 (c) join linear ones and, fi nally, Table 2 (d) shows molecules with different 

geometry.

Molecule

Integrals 

 Amount 

(Peak)

Integrals 

Amount 

(Real)

Inertia 

Moments 

Average

Integrals 

Amount

Index

Cutoff
3D

(eq. 3.3)

Integrals 

Amount 

(Theoretical)

C20 131220000 110959278 0.66 0.8456 0.8525 111862938

C24 272097792 208410000 0.9706 0.7659 0.7680 208984058

C26 374777442 273210000 1.1374 0.7290 0.7291 273247446

C32 859963392 546123744 1.7114 0.6351 0.6192 532500682

C36 1377495072 765225000 2.1683 0.5555 0.5514 759589474

C50 5125781250 1846036324 4.1746 0.3601 0.3652 1871907330

C60 10628820000 2871443565 5.9383 0.2702 0.2754 2927453593

C70 19691201250 3875575000 8.2007 0.1968 0.2040 4016438174

C80 33592320000 4935675000 10.8287 0.1469 0.1516 5093806765

tube9x0 53808401250 4784685000 15.6514 0.0889 0.0952 5123540728

tube5x5 82012500000 6374865000 19.2767 0.0777 0.0693 5685952011

tube10x0 82012500000 5480295000 19.7194 0.0668 0.0667 5474319381

tube11x0 120074501250 6276855000 24.5229 0.0523 0.0442 5308223325

Table 2 (a)

Molecule

Integrals 

 Amount 

(Peak)

Integrals 

Amount 

(Real)

Inertia 

Moments 

Average

Integrals 

Amount

Index

Cutoff
planar

(eq. 3.4)

Integrals 

Amount

 (Theoretical)

C024H12 414720000 91891108 1.97 0.2216 0.2145 88976365

C054H18 9280941282 656138426 9.9010 0.0707 0.0650 603303957

C096H24 86474760192 2285019245 32.0117 0.0264 0.0226 1953694292

C150H30 288909830440 4307400000 63.3191 0.0149 0.0121 3490016083

ST 1 49406770 12405000 1.4198 0.2511 0.2556 12629446

ST 2 746602082 70680000 6.0850 0.0947 0.0976 72839839

ST 3 3707681328 187830000 11.3334 0.0507 0.0578 214330734

ST 4 11605565952 362790000 20.0194 0.0313 0.0347 403256711

ST 5 28170003480 588345000 32.0003 0.0209 0.0226 636643098

ST 6 58187567522 860745000 49.0567 0.0148 0.0153 887498257

ST 7 107501657770 1186680000 71.4531 0.0110 0.0108 1163878713

ST 8 183012500000 1552095000 100.7056 0.0085 0.0080 1458440458

Table 2 (b)
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Molecule

Integrals 

Amount 

(Peak)

Integrals 

Amount 

(Real)

Inertia 

Moments 

Average

Integrals 

Amount

Index

Cutoff
Linear

(eq. 3.5)

Integrals 

Amount 

(Theoretical)

PAH5 326094722 53407147 3.1 0.1638 0.1662 54194436

PAH6 625801442 77464180 4.9786 0.1238 0.1269 79440060

PAH7 1095962562 105564358 7.5165 0.0963 0.0967 106008265

PAH8 1791490082 139350678 10.6247 0.0778 0.0753 134885573

PAH9 2774976002 175805880 14.6980 0.0634 0.0587 162992453

PAH10 4116692322 216111579 19.7086 0.0525 0.0466 191807793

Ppv02 63281250 14740941 1.4130 0.2329 0.2310 14617302

Ppv03 374777442 41679123 5.3426 0.1112 0.1214 45516493

Ppv04 1278257922 79897863 13.4387 0.0625 0.0630 80489041

Ppv05 3264481602 130164851 27.1820 0.0399 0.0360 117597342

Ppv06 6973568802 191671635 48.0815 0.0275 0.0230 160044508

Ppv07 13195001250 264129359 77.6390 0.0200 0.0161 211908766

Ppv08 22867622082 347291656 117.3565 0.0152 0.0121 277597624

Ppv09 37079635842 440803634 168.8092 0.0119 0.0098 361853679

Ppv10 57068608482 544969890 233.2786 0.0095 0.0082 470288269

Ppv11 84221467362 659156710 312.4870 0.0078 0.0072 608549489

Ppv12 120074501250 783349636 407.8687 0.0065 0.0065 783228368

Table 2 (c)

Molecule

Integrals 

 Amount 

(Peak)

Integrals 

Amount 

(Real)

Inertia 

Moments 

Average

Integrals 

Amount

Index

Cutoff

Integrals 

Amount 

(Theoretical)

pan12 71283516990 1337184754 213.14 0.0188 0.00862 614294147

chlorophyl 36084933690 1597738503 43.6800 0.0443 0.02473 892289058

-carotene 5794045952 366675785 34.2000 0.0633 0.02998 173725839

streptomycin 23718420000 2129945016 13.8300 0.0898 0.11262 2671073415

taxol 4770886562 589268567 8.4100 0.1235 0.08937 426395108

Table 2 (d)

Figures 15 to 18 show the values presented in 

the Table 2 in a graphical way. These results show 

that the modeling proposed in this work keeps 

values very close to those empirically obtained 

from algorithm execution. The errors observed 

in 3D, planar and linear groups were 3%, 7% and 

8%, respectively. The differences verifi ed with 
tube 5x5, tube 11x0 and C150H30 molecules 
were not considered signifi cant. Their values are 
consistent and demonstrate that the curve of the 
modeled values is close to the empirical ones. 

The distinct-geometry molecular group, Table 
2(d), present a major error rate, from 25% up to 
50%. The irregular geometry observed in these 
molecules make diffi cult to match them in the 
proposed groups. However, the differences found 
here are signifi cantly smaller than the observed in 
(SCHMIDT, 1993).

▌
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Figure 15 – Graph comparing real and theoretical 2e- Integral Amount for tri-dimensional molecular structures.

Figure 16 – Graph comparing real and theoretical 2e- Integral Amount for planar molecular structures.

Figure 17 – Graph comparing real and theoretical 2e- Integral Amount for linear molecular structures.
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Figure 18 – Graph comparing real and theoretical 2e- Integral Amount for distinct-geometry group of  molecular 

structures.

It can be observed in Fig. 19 that the modeling proposed here is consistent even when considering 

the STO-6G and 6-311G basis set. These results show a similar behavior to the 6-31 ones. Some fullerenes 

(C36 up to C80) cannot be executed with 6-311G basis set, since GAMESS presented an overfl ow error 
when summing the 2e- integrals amount. GAMESS uses 32 bits to represent the integrals amount and 
this upper threshold was exceeded.

Figure 19 – Graph comparing Evaluated 2e- Integrals percentage among basis set.



Publ. UEPG Ci. Exatas Terra, Ci. Agr. Eng., Ponta Grossa, 14 (2): 79-97, ago. 2008 

95

Molecule      Real     Estimated  Difference

   C20  3.96770    3.96927   0.03937

   C24  3.95039     3.95090   0.01295

   C26  3.94206    3.94208   0.00064

   C32  3.91982    3.91536   0.11380

    C36  3.89831    3.89703   0.03280

   C50  3.83284    3.83511   0.05943

   C60  3.79198    3.79505   0.08097

   C70  3.74782    3.75336   0.14779

   C80  3.70851    3.71330   0.12925

tube9x0  3.63864    3.64886   0.28080

tube5x5  3.62447    3.60766   0.46386

tube10x0  3.60224    3.60208   0.00445

tube11x0  3.57214    3.54784   0.68025

  PAH 5  3.66622    3.66892   0.07364

  PAH 6  3.62582    3.63033   0.12441

  PAH 7  3.59115    3.59189   0.02042

  PAH 8  3.56319    3.55762   0.15633

  PAH 9  3.53675    3.52405   0.35926

  PAH 10  3.51325    3.49354   0.56087

  Ppv02  3.70923    3.70755   0.04532

  Ppv03    3.59740    3.61354   0.44879

  Ppv04  3.51883    3.52011   0.03636

  Ppv05  3.46267    3.44574   0.48900

  Ppv06  3.41901    3.38986   0.85260

  Ppv07  3.38365    3.34893   1.02594

  Ppv08  3.35412    3.31957   1.03008

  Ppv09  3.32885    3.29897   0.89776

  Ppv10  3.30699    3.28503   0.66402

  Ppv11  3.28768    3.27594   0.35685

  Ppv12  3.27044    3.27042   0.00069

C024H12  3.72503    3.71915   0.15789

C054H18  3.57662    3.56321   0.37509

C096H24  3.46689    3.44391   0.66296

C150H30  3.40907    3.37950   0.86728

  ST 1  3.72074    3.72436   0.09738

  ST 2  3.58111    3.58646   0.14936

  ST 3  3.50523    3.52712   0.62461

  ST 4  3.45111    3.46786   0.48534

  ST 5  3.40802    3.42010   0.35423

  ST 6  3.37265    3.37721   0.13512

  ST 7  3.34406    3.34124   0.08445

  ST 8  3.31888    3.30999   0.26778

PAN12  3.41246    3.29752   3.36829

chlorophyll   3.52748    3.43918   2.50332

β-carotene   3.55046    3.42880   3.42669

  taxol    3.62876    3.66363   0.96093

streptomycin  3.65666    3.60355   1.45245

Table 3 and Fig. 20 allow to compare the 

methodology proposed, considering both real and 

estimated exponent ( α ). Equation 3.1 was used 

as base for this comparison. Real α was obtained 

from empirical amount of integrals actually 

evaluated by GAMESS. Estimated α considered 

the amount of integrals predicted from cutoff 

modeling. The greatest differences found were 

1.03% for regular molecular structures and 3.43% 

for the molecules inside fourth group.

 These results show that is possible to 

estimate, with better precision, the complexity 

of the energy evaluation with the Hartree-Fock 

algorithm. This study is useful to the user because 

it makes possible to him to appraise formerly the 

computational cost generated by HF procedure. 

It considers as example the sequential execution 

of tube10x0 molecule, storing temporally in disk 

the 2e- integrals evaluated in HF procedure. The 

modeling proposal here allow to estimate that all 

5.74 x 109 .2e- integrals will require 81.57 Gbytes, 

in order to store in disk the integrals and their labels 

(8+8 bytes). This result can be used directly, for 

example, to determine the execution viability with 

Conventional SCF – CSCF algorithm, which stores 

the integrals in disk.

 The estimative of the 2e- integrals amount 

existent in GAMESS manual (SCHMIDT, 1993) is 

the nearest to this work. The GAMESS estimative 

does not consider the 2e- integrals cutoff and gives 

to the fi nal user a maximum limit to integrals 

amount. The estimative provided by GAMESS for 

the early example would be ~82.01 x 109  integrals 

and ~1.19Tbytes stored in disk. The use of ~N2 

is far from real amount of 2e- integrals in this 

case, since it would result ~8.1 x105  integrals and 

12.36Mbytes stored in disk.

Table 3 – Comparison of real and estimated α exponent.

Figure 20 – Graph comparing real and estimated α exponent.
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 If there is a trustful estimative of the 

2e- integrals amount, it will be possible estimate 

the time necessary to execute the HF procedure 

too. The time estimative does not belong to 

scope of this work. However, a future analytic 

modeling can instantiate the proportionally of 2e- 

integrals amount and the time to execute the HF 

procedure. 

5 Concluding Remarks and Future 
Works

 This paper presented a methodology to 

estimate real 2e- integrals amount in HF procedure, 

when different kind of molecules are executed. 

This methodology is based in molecular geometry 

and uses as metric the inertia moment mean.

 Prime studies were done using 6-31G basis 

set. This basis set was chosen because it is an 

intermediary basis set and due to its common use. 

STO-6G and 6-311G were also used to demonstrate 

the behavior of proposed methodology in different 

situations.

 Results obtained attest that proposed 

methodology is consistent and allow estimating 2e- 

integrals cutoff for unknown geometry molecules. 

Errors observed in modeling were 3%, 7% e 8% 

respectively to 3D, planar and linear groups.

 Errors found in distinct geometry molecular 

group are caused by the lack of regular geometry, 

primordially. However, the fact of this work 

estimates 2e- integrals cutoff based on 3D, planar 

and linear geometries does not hinder its use in 

other situations. Estimate remains consistent for 

geometry distinct molecules, hence differences 

found are signifi cantly smaller than that observed 
in (SCHMIDT, 1993).

 Future works on this subject are mainly 
directed to determine the complexity existent in 
their algorithms. This work will be useful to the 
fi nal user that will be able to predict the necessary 
time to execute their simulations and to determine 
the disk demand too.

 It is being developed a methodology 
to determine the scalability of HF procedure 
on a Beowulf Cluster. The 2e- integrals cutoff 

methodology proposed here is being used 
successfully.

Another point, not treated in this work, is 
the automating of molecular geometry choice. The 
modeling proposed here requires that user indicates 
which is the most suitable model of three groups 
for its molecule.
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