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Abstract. This study presents a procedure for integrating negative information 

into robust Bayesian inference. In the proposed procedure, negative 

information is codified as linear restrictions of the conditional probability 

intervals that quantify the uncertainty in the relationship between the classifying 

variables. During the inference, the robust Bayesian classifier is converted into 

a credal classifier. The classifier topology is the same as the Naive Bayesian 

classifier, and the optimization problems related to the inferences are solved by 

multilinear optimization. Since the objective of an inference is to compute the 

posterior probability interval of each class, by integrating the negative 

information, the inference procedure might obtain more precise intervals than 

those obtained by a robust Bayesian classifier. This might favor the use of the 

decision criterion called interval dominance when selecting plausible labels 

and defining a course of action for a given object of interest. The effectiveness 

of the procedure is illustrated with an example. 

Keywords. Imprecise probabilities, Bayesian classification, Negative 

probabilistic information, Probabilistic inference 

1. Introduction 

A classifier is a function that receives a descriptor (feature set) of a given object as input 

and returns a label that identifies its category. To carry out such a task, the naive  Bayesian 

classifier (NBC) implements a probabilistic model that codifies the relationship between 

the descriptor attributes and the class labels. This probabilistic model is employed in the 

inference of the posterior probabilities of the classification hypotheses and the most 

probable hypothesis is selected using the Bayesian decision rule. 

NBC learning can be summarized in two steps: In the first step, the network 

structure is defined, that is, the class labels are listed, and the attributes used to describe 

the objects are enumerated. The second step carries out the parameter training. In this 

step, learning algorithms estimate the marginal probabilities of each class and the 

conditional distributions of each attribute from the relative frequencies of a set of 

observations stored in a training data set. 

When classifier training must be executed on an incomplete data set, it is not 

possible to exactly determine the frequency of each attribute value from the data. 

Consequently, the parameters obtained for the NBC are permeated by uncertainty and 

inaccuracy [21]. Considering this factor, Ramoni and Sebastiani [15] proposed the robust 

Bayesian classifier (RBC). This classifier extends the NBC using probability intervals to 

quantify the uncertainty in the model parameters. In this formalism, decision making 

regarding the classification of an object is performed in two steps: First, an optimization 

procedure computes lower and upper limits for the posterior probability of each 
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hypothesis; second, every classification hypothesis that is plausible with a decision 

criterion, called interval dominance, is reported as a possible categorization of the 

instance under analysis. 

Since RBC can assign multiple hypotheses to the same object, it is not easy to 

choose a course of action based on the obtained results. Following Destercke [8], this 

study assumes that one way of mitigating this problem could be exploring the domain 

knowledge during the posterior probability intervals calculation of each hypothesis and 

possibly ruling out some non-plausible hypotheses. In this sense, this study presents a 

procedure called ir-, which uses credal network formalism to incorporate negative 

information into RBC inferences. A piece of negative information is a probabilistic 

statement that imposes constraints on the numerical parameters of the model. 

The ir- procedure calculates the lower and upper limits for the probability of each 

conjunction between a classification hypothesis and the provided evidence. It converts 

the RBC into a credal classifier [21] and then performs a simplified version of the 

inference algorithm proposed by Campos and Cozman [7]. Next, ir- updates the 

multilinear program with negative information and solves it. The negative information is 

assumed to be supplied by experts and resembles a collection of linear inequations that 

further constrain the intervals of some model probabilities. The ir- effectiveness is 

illustrated by an example. 

This paper is organized as follows: Section 2 presents a review of the NBC, the 

RBC, and the credal classifier; Section 3 introduces the ir- procedure; Section 4 presents 

an example of the ir- application; Section 5 concludes the paper. 

2. Background review 

Consider a random variable C, whose sample space, denoted by Ω, has the values c1…cr 

that indicate the possible hypotheses for object classification of an interest domain. 

Consider a set of random variables X, whose elements 𝑋𝑖 … 𝑋𝑛 represent the 

characteristics used to describe the domain objects. The terms “attribute” and “descriptor” 

are also used to refer to the variables in X. In this study, it is assumed that each Xi is 

discrete and has a finite number of values. The sample space of Xi, i = 1,…, n, is 

represented as Ωi and its elements are denoted by 𝑥𝑖,1, … , 𝑥𝑖,𝑟𝑖
. Here, ri indicates the 

cardinality of Xi. 

A classification problem concludes the class or category identification of an object from 

its characteristics. A classifier is a function F : X → C that returns a class label c ∈ Ω, 

which would ideally be consistent with a set of observations E = {𝑥1,𝑘1
, … , 𝑥𝑛,𝑘𝑛

} [17]. 

Here, 𝑥𝑖,𝑘𝑖
 reports the value of Xi for an object of interest I. 

To infer the class of an object, a Bayesian classifier initially calculates the posterior 

probabilities 𝑃(𝑐𝑗|𝐸), j = 1, …, r. Then, it employs the Bayesian decision rule [10] to select 

the hypothesis 𝑐 ∗ that maximizes the posterior probability.  

 

𝑐 ∗= 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐𝑗∈Ω

𝑃 (𝑐𝑗|𝐸) 

 

The NBC can be described as a Bayesian network [13] B = (G,P), where G is an n-ary 

tree of height one, whose root represents the variable C and each external node is an 

element of X. P is a collection of conditional probability tables (CPTs) defined for the 

model variables. Specifically, every node Xi stores a function p(Xi|C) in a CPT of 

dimension r × ri in which the kth input of the jth line specifies the probability P(xi,k|cj). 
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The root node CPT contains the marginal distribution 𝑝(𝐶) = (𝑝(𝑐1), … , 𝑝(𝑐𝑟)). Figure 

1 illustrates the NBC topology. 

 

 
Figure 1: Naive Bayesian classifier topology. 

 

From the Bayes theorem, we obtain P(cj|E) ∝ P(E| cj) P(cj). In addition, since NBC 

assumes that each attribute is conditionally independent from the others, given the value 

of C, c* can be obtained by solving the following equation:  

 

𝑐 ∗= 𝑎𝑟𝑔 𝑚𝑎𝑥
𝑐𝑗∈Ω

𝑃 (𝑐𝑗) ∏ 𝑃(𝑥𝑖,𝑘𝑖
|𝑐𝑗)𝑛

𝑖=1 .                      (1) 

 

Given the topology of an NBC and a dataset D, with observations about the 

variables in X ∪{C}, the maximum likelihood criterion prescribes that the CPTs of the 

classifier can be estimated as the relative frequencies observed in the data [10] [17]. Thus, 

if D has m cases and all the cases are complete, the parameters P(xi,k|cj), of the CPT of Xi 

and P(cj) of the root node are given, respectively, by the following: 

 

 

 

where mj is the absolute frequency of the jth class in D and mijk is the number of cases 

in D for which the expression (Xi = xk ∧ C = cj) is true. 

 

2.1 Robust Bayesian Classifier 

A training dataset D is said to be incomplete or has missing data, when some of its entries 

have attributes whose values were not observed [4]. RBC is used to address this situation 

[15]. This classifier employs imprecise probability theory [20] to represent the uncertainty 

associated with the numerical parameters of an NBC and express its impact on the 

inferences. The main argument in favor of the use of this type of model is the following: 

If it is not possible to determine the probability of an event in a sample, it is possible to 

work with a probability interval. 

RBC is a pair Br = (G,I) in which G is a tree, arranged in the same way as an 

NBC, and I is a set of interval probabilities. The tree root stores the collection of intervals 

IC = ([P(c1), 𝑃(𝑐1)],…, P(cn),  𝑃(𝑐𝑛)]), whereas each external node Xi stores a collection 

𝐼𝑋𝑖|𝑐𝑗
= ([𝑃(𝑥𝑖,1|𝑐𝑗), 𝑃(𝑥𝑖,1|𝑐𝑗)],…,[𝑃(𝑥𝑖,𝑛|𝑐𝑗), 𝑃(𝑥𝑖,𝑛|𝑐𝑗)]) for each cj ∈ ΩC. That is, an 

RBC assumes that P(cj) belongs to the interval [P(cj),…,𝑃(𝑐𝑛)], whose extremes are 

called lower and upper probabilities. This also applies to P(xi,k|cj) in relation to [𝑃(𝑥𝑖,𝑖|𝑐𝑗), 

𝑃(𝑥𝑖,𝑖|𝑐𝑗)]. Another CBR assumption is that each collection of intervals is consistent [5]. 

Additionally, ∑ 𝑃(𝑐𝑗)𝑟
𝑗=1 = 1 and ∑ 𝑃(𝑥𝑖,𝑘|𝑐𝑗)

𝑟𝑖
𝑘=1 = 1. 

𝑃(𝑥𝑖,𝑗|𝑐𝑗) = 𝑚𝑖𝑗𝑘/𝑚𝑗  

𝑃(𝑐𝑗) = 𝑚𝑗/𝑚 

about:blank#fn4x0
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 Figure 2 shows an RBC topology, where C is a propositional variable whose 

values v and f indicate the class labels. The attributes X1 and X2 are two binary variables, 

which can be + or – (positive or negative) values. In the example, the root node is 

associated with intervals IC = ([0.55, 0.6], [0.4, 0.45]). The attributes are related to the 

following interval collections: 𝐼𝑋1|𝑣  = ([0.1, 0.3], [0.7, 0.9]), 𝐼𝑋1|𝑓 = ([0.6, 0.8], [0.2, 0.4]), 

𝐼𝑋2|𝑣 = ([0.9, 0.6], [0.1, 0.4]), and 𝐼𝑋2|𝑓= ([0.5, 0.6], [0.4, 0.5]). 

 

 

 
Figure 2 – Robust Bayesian classifier 

 

Given an incomplete dataset, the extremes of the interval 𝐼𝑋𝑖|𝑐𝑗
 are calculated 

according to the expressions:  

 

𝑃(𝑥𝑖,𝑘|𝑐𝑗) = 𝑚𝑖𝑗𝑘/(𝑚𝑗 + 𝑚𝑖𝑗𝑘)     (2) 

 

𝑃(𝑥𝑖,𝑘|𝑐𝑗) = (𝑚𝑖𝑗𝑘 + 𝑚𝑖𝑗𝑘)/(𝑚𝑗 + 𝑚𝑖𝑗𝑘)   (3) 

 

  

In these equations, mj and mijk are defined in the same way as in the NBC training. 

The term mijk indicates the number of cases in which: (a) Xi is not observed and C = cj 

or (b) C is unknown and Xi is known and different from xik or (c) neither Xi nor C is 

known. Therefore, mijk accounts for the cases that are, or could be, associated with the 

category cj. Additionally, 𝑚𝑖𝑗𝑘 is the sum of all the incomplete cases that could be related 

to inputs in which X = xik and C = cj. Thus, if (a) mij* is the number of cases in which C 

= cj but Xi is not observed; (b) mi*h indicates the number of registers in which Xi = xih 

while the label of the instance is unknown; and (c) m
*** is the number of cases in which 

Xi and C are unknown, the terms mijk and mijk are obtained by:  

𝑚𝑖𝑗𝑘 = 𝑚𝑖𝑗∗+𝑚∗+∑ 𝑚𝑖∗ℎℎ≠𝑘
 

𝑚𝑖𝑗𝑘 = 𝑚𝑖𝑗∗+𝑚∗+𝑚𝑖∗𝑘
. 

 

In these expressions, mij*, mi*h and m*** are named virtual frequencies and 

indicate the number of incomplete cases that could be related to the event xi,k|cj. 

Regarding the root node, the extremes of each interval are given by P(cj) = mj/m and P(cj) 

= (m*+mj)/m. 

Similar to NBC, the classification of an instance I with a RBC is also processed 

in two phases. The first phase calculates the posterior intervals of each hypothesis using 

message propagation algorithms in interval Bayesian networks [18] [4]. The collection of 

intervals is represented as 𝐼𝐶|𝐸 = ([𝑃(𝑐𝑗|𝐸]), 𝑃(𝑐𝑗|𝐸)]: 𝑖 = 1, . . . , 𝑟). The second phase 

dismisses hypotheses that are not plausible using an interval dominance criterion [15] 

[20]. 
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A hypothesis cl is dominated by the hypothesis cj, l ≠ j, if, and only if, 𝑃(𝑐𝑙|𝐸) <

𝑃(𝑐𝑗|𝐸). If cj dominates every other hypothesis, the analyzed object should be labeled as 

a member of cj. If cj is dominated by every other hypothesis, then it should be discarded.  

If cj is non-dominated, but there are other hypotheses that neither dominate nor are 

dominated by cj, the object of interest should be associated with every non-dominated 

hypothesis. 

 

2.2 Credal Classifier 

A credal set on X ∈ X, denoted by K(X), is a convex set of marginal distributions p(X) 

[12]. In this study, it is assumed that K(X) is a polytope, whose vertices are probabilistic 

distributions on X. Thus, if 𝑝1(𝑋), … , 𝑝𝑡(𝑋) denotes the extremes of the credal set and cc 

represents the convex hull operation [19], then K(X) = cc(𝑝1(𝑋), … , 𝑝𝑡(𝑋)). Similarly, a 

conditional credal set K is composed of conditional distributions 𝑃 so that 𝑋1, 𝑋2 ∈ 𝑋 and 

𝑥2,∗∈𝛺2
. Similar to the marginal case, K can be described as the convex hull of t extreme 

distributions. 

A credal network is a pair BC = (G,Q) in which G is a directed acyclic graph 

whose nodes represent elements of a set of variables X and the arcs indicate a direct 

probabilistic dependence [6]. This study considers networks that present a naive credal 

classifier (NCC) topology [21, 4]. G is a tree of height one whose structure is close to  

NBC. Each node also represents an attribute that stores a collection of separately specified 

credal sets [16]. The classifier root stores the collection Q(C) whose single element is the 

credal set K(C) and each external node maintains the collection Q(Xi|C) composed of the 

conditional credal sets 𝐾(𝑋𝑖|𝑐1), … , 𝐾(𝑋𝑖|𝑐𝑟). 

Figure 3 illustrates an NCC whose structure is of sufficient likeness to RBC 

(Figure 2). In this example, the root node is associated with the collection Q(C) = {K(C) 

= cc((1∕3; 2∕3), (0,4; 0,6))}. The collections of X1 and X2 are as follows: Q(X1|C) = 

{𝐾(𝑋1|𝑣) = cc((0,1; 0,9),(0,3; 0,7)), 𝐾(𝑋1|𝑓) = cc((0,6; 0,4),(0,8; 0,2))} and Q(X2|C) = 

{𝐾(𝑋2|𝑣) = cc((0,9; 0,1),(0,6; 0,4)), 𝐾(𝑋2|𝑓) =cc((0,5; 0,5),(0,4; 0,6))}. 

 

 

 

Figure 3: Naive credal classifier topology. 

 

 NCC also assumes that each attribute is conditionally dependent on the others, 

given the value of the variable C. However, as different ways of formulating the 

independence relation in the credal set theory exist [1], it is necessary to choose the one 

most suitable to the objectives of the application. This study considers NCCs that encode 

strong independence relations [5]. Given the instantiation C = cj, two attributes Xi and Xl 

are strongly independent  if each vertex of the credal set 𝐾(𝑋𝑖, 𝑋𝑙|𝑐𝑗), whose elements are 

distributions of the type, 𝑝(𝑋𝑖, 𝑋𝑙|𝑐𝑗), can be factored as 𝑝(𝑋𝑖|𝑐𝑗).𝑝(𝑋𝑙|𝑐𝑗). Additionally, 
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𝑝(𝑋𝑖|𝑐𝑗) ∈ Ext(𝐾(𝑋𝑖|𝑐𝑗)) and 𝑝(𝑋𝑙|𝑐𝑗) ∈ Ext(𝐾(𝑋𝑙|𝑐𝑗)). 

 Campos and Cozman [7] describe an inference algorithm in credal networks that 

can be used to calculate upper and lower bounds for the posterior probability of any event 

defined on the network variables. The algorithm has two steps: In the first step, the 

algorithm generates a multilinear optimization program [9], whose objective function is 

the posterior probability of the interest event and the feasible region is defined by the 

specification of the credal network sets and the probability theory axioms. In the second 

step, the algorithm performs a non-linear optimization procedure to solve the multilinear 

program. 

 

3. Robust classification and negative information 

A negative information specifies values that cannot be assigned to the parameters of a 

model [3], for example, by establishing that a parameter cannot be larger than a given 

threshold. Regarding imprecise probabilistic models, this type of information usually sets 

up linear constraints for the probability measures [8]. Given that, this work assumes that 

any report of negative information concerning the parameters of an RBC encodes 

inequalities that: (a) set up bounds for the probability of an event, or (b) make a partial 

order relationship (comparison) between two measures of explicit conditional 

probabilities.  

 Thus, as before, let 𝐼𝑋𝑖|𝑐𝑗
 = ([𝑃(𝑥𝑖,1|𝑐𝑗), 𝑃(𝑥𝑖,1|𝑐𝑗)]…,[𝑃(𝑥𝑖,𝑛|𝑐𝑗), 𝑃(𝑥𝑖,𝑛|𝑐𝑗)])  be 

the collection of probability intervals of the variable Xi in a CBR Br. A negative 

information that sets a lower bound likj for 𝑃(𝑥𝑖,𝑘|𝑐𝑗) assumes the format of Equation 4. 

Similarly, an upper bound 𝑙𝑖𝑘𝑗 for 𝑃(𝑥𝑖,𝑘|𝑐𝑗) is expressed as in Equation 5 and the 

information that 𝑥𝑖𝑘1
is as likely as or is more likely than 𝑥𝑖𝑘2

 when C = cj , is described 

in Equation 6.  

 

𝑃(𝑥𝑖,𝑘|𝑐𝑗) ≥ likj (4) 

𝑃(𝑥𝑖,𝑘|𝑐𝑗) ≤ 𝑙𝑖𝑘𝑗 (5) 

𝑃(𝑥𝑖,𝑘1
|𝑐𝑗) − 𝑃(𝑥𝑖,𝑘2

|𝑐𝑗) ≥ 0 (6) 

 

 

 Procedure ir- explores two facts. The possibility of convert each collection 𝐼𝑋𝑖|𝑐𝑗
 

of a RBC into a credal set 𝐾(𝑋𝑖|𝑐𝑗) and the possibility of append the constraints declared 

in the negative information to the definition of 𝐾(𝑋𝑖|𝑐𝑗). It generates a new credal set K′ 

⊆ 𝐾(𝑋𝑖|𝑐𝑗). Notably, K′ can reduce the feasible region of the multilinear program of an 

inference and, by doing so, it can reduce the imprecision of the posterior probability 

interval of each class label.  

 Algorithm 1 (Figure 4) describes the ir- procedure. How it can be seen, ir- receives 

a RBC, Br, a collection of negative information, L and the evidence E. In its first step, 

Br is converted into a credal classifier BC. That is, it builds a credal network with the 

same topology of the RBC and then, converts each RBC collection into a credal set Q [4]. 

In next, Q is associated with a node of the NCC.  
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Procedure: ir- 

Input: a RBC Br, the evidence E and the negative information L; 

1 Convert Br into a credal classifier BC; 

2 For each 𝑐𝑗 ∈ Ω𝐶  do 

 a Execute the algorithm in Algorithm 2 [7] to generate the multilinear programs 

M1 and M2 

 b Generate the programs M’1 and M’2 by inserting the negative information into 

M1 and M2; 

 c Determine [P′(cj  ∧ E), P′(cj  ∧ E)]  by solving M’1 and M’2; 

3  Return the intervals for each class in Ω𝐶. 

Figure 4: Algorithm 1 - The ir- procedure. 

  

 Thus, for the root node, we have Q(C) = {K(C)}, with K(C) = {P(C)}. For an 

external node, 𝐼𝑋𝑖|𝑐𝑗
originates the credal set 𝐾(𝑋𝑖|𝑐𝑗); here, 𝐾(𝑋𝑖|𝑐𝑗) is defined as the 

largest credal set1 that agrees with the intervals in 𝐼𝑋𝑖|𝑐𝑗
: 

 

K(𝑋𝑖|𝑐𝑗) = {p(𝑋𝑖|𝑐𝑗): ∀𝑥𝑖𝑘∈Ω𝑖
P(𝑥𝑖𝑘|𝑐𝑗) ∈ [𝑃(𝑥𝑖,𝑘|𝑐𝑗), 𝑃(𝑥𝑖,𝑘|𝑐𝑗)], 

∑ 𝑃(𝑥𝑖𝑘|𝑐𝑗)

𝑥𝑖𝑘∈Ω𝑖

= 1}. 

  

 The collection Q(Xi|C) is then defined as the set { 𝐾(𝑋𝑖|𝑐𝑗): j = 1..t }.  

 The second step of ir- embeds the inference computation. The step (2a) build the 

multilinear programs M1 and M2. The step (2b) generates M’1 and M’2 by appending the 

negative information into M1 and M2. In next, step (2c) runs a solver algorithm that 

computes the solution of M’1 and M’2.  

 In the last step, the procedure ir- returns an interval [P′(cj  ∧ E), P′(cj  ∧ E)] for 

each classification hypothesis cj. The limits 𝑃′(𝑐𝑗 ∧ 𝐸) and 𝑃′(𝑐𝑗 ∧ E) are outer bounds 

for the desired probabilities, given the negative information and credal sets of the NCC.  

 

Procedure: Multilinear program generator for computing P(cj ∧ E) 

Input: a NCC BC, the evidence E and an integer j; 

                                                 
1 In this study, the credal sets were implemented using a representation of polytopes based on semi-spaces 

(representation-H; see [2], [11]).  
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Definition: R is a set of inequalities; 

1 Initialize R with the constraints that specify the credal sets in BC; 

2 Define de program M1 = 𝑚𝑖𝑛 𝑃 (𝑐𝑗) ⋅ ∏ 𝑃(𝑥𝑖,𝑘𝑖
|𝑐𝑗)𝑛

𝑖=𝑖 , s.a. R; 

3 Return M1. 

Figure 5: Algorithm 2 – Multilinear program generator. 

 

Algorithm 2 shows the routine that generates the multilinear program M1. , adapted from  

Campos and Cozman [7]. Similarly to the original algorithm, the procedure in Figure 5 

processes the measures of the model probabilities in terms of symbolic expressions and 

generates a multilinear optimization program. In step (1), the algorithm builds up the 

feasible region R as the union of every constraint defining the credal sets of C. In second 

step, the procedure defines M1 by setting up its objective function and feasible region R. 

The third step returns M1 to ir-.  

 The routine that generates the multilinear program M2 is similar to Algorithm 2. 

Basically, it replaces the minimization operation with a maximization one. 

 

4 An example application 

Let Br be the RBC of Figure 2 and D be the dataset presented in Table 1. The sample 

spaces of C, X1 and X2 are ΩC = {n,s}, Ω1 = {-,+} e Ω2 = {0,1}, respectively. RBC 

learning procedure estimates the following probability intervals IC = ([1∕3;1∕3],[2∕3;2∕3]), 

IX1|C=n = ([0,583;1],[0;0,417]), IX1|C=s = ([0,167;0,375],[0,625;0,83]), IX2|C=n = 

([0,167;0,5],[0,5;0,83]) and IX2|C=s = ([0,542; 0,75],[0,25;0,458]), from equations 2 and 

3, and dataset D.  

 Additionally, let it be the task of computing interval of probabilities for 𝑃(𝐶 ∧ 𝐄) 

so that E = {X1 = “-“, X2 = 1}. Using the procedure ir-, the RBC BR is converted into a 

credal classifier BC whose collections Q(C), Q(X1|C) and Q(X2|C) are listed in Appendix 

I. In the absence of negative information, the procedure ir- generates multilinear programs 

whose feasible region R, is defined as the union of the expressions listed in such appendix.  

 

Table 1: Training base used in the example. 
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Thus, Equations (8) and (9) describe the optimization problems M1 and M2 relatives to 

P(𝐶 = 𝑛 ∧ 𝐸). Equations (10) and (11) do the same for P(𝐶 = 𝑠 ∧ 𝐸). 

 

M1: minP(C = n) ⋅ P(X1  = −| n) ⋅ P(X2 = 1| n) s.t. R (8) 

M2: maxP(𝐶 = 𝑛) ⋅ 𝑃(𝑋1  = −|𝑛) ⋅ 𝑃(𝑋2 = 1|𝑛) s.t. 𝑅 (9) 

M1: minP(𝐶 = 𝑠) ⋅ 𝑃(𝑋1  = −|𝑠) ⋅ 𝑃(𝑋2 = 1|𝑠) s.t. 𝑅 (10) 

M2: maxP(𝐶 = 𝑠) ⋅ 𝑃(𝑋1  = −|𝑠) ⋅ 𝑃(𝑋2 = 1|𝑠) s.t. 𝑅 (11) 

 

 After solving the problems above, ir- reports the intervals [0.06,0.1] and 

[0.037,0.083] for P(𝐶 = 𝑛 ∧ 𝐸) and P(𝐶 = 𝑠 ∧ 𝐸), respectively. Since, in this case, none 

of the classes is dominated, the classifier cannot discard any of them. In this example, the 

optimization phase was carried out with the Cobyla solver[14].  

 Now, let R1 be a negative information report that states the constraint 

𝑃(𝑋1 = +|𝐶 = −) ≤ 0.05, the procedure ir- defines appends the list L = {R1} to the 

feasible region of  M’1 and M’2 and then generates the following multilinear programs:  

M’1: 𝑚𝑖𝑛𝑃(𝐶 = 𝑛) ⋅ 𝑃(𝑋1  = −|𝑛) ⋅ 𝑃(𝑋2 = 1|𝑛) s.t. R ∪ L (8) 

M’2: 𝑚𝑎𝑥𝑃(𝐶 = 𝑛) ⋅ 𝑃(𝑋1  = −|𝑛) ⋅ 𝑃(𝑋2 = 1|𝑛) s.t. R ∪ L (9) 

M’1: 𝑚𝑖𝑛𝑃(𝐶 = 𝑠) ⋅ 𝑃(𝑋1  = −|𝑠) ⋅ 𝑃(𝑋2 = 1|𝑠) s.t. R ∪ L (10) 

M’2: 𝑚𝑎𝑥𝑃(𝐶 = 𝑠) ⋅ 𝑃(𝑋1  = −|𝑠) ⋅ 𝑃(𝑋2 = 1|𝑠) s.t. R ∪ L (11) 

 

 

 The solution of these new problems produces the intervals P(𝐶 = 𝑛 ∧ 𝑬) = 

[0.1,0.11] and  P(𝐶 = 𝑠 ∧ 𝑬) = [0.04, 0.083]. As it could be observed, now, given the 

negative information, the new results allow the determination of the hypothesis C = s as 
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the most probable.  

5 Conclusion 

This work introduced the procedure ir- that explores the uses of negative information 

when carrying out inferences in robust Bayesian classifiers. The procedure initially 

converts the RBC into a credal classifier and then integrates negative information, a kind 

of a priori knowledge, into the multilinear programs associated to each inference. As 

observed in the example, the procedure proposed was able to use negative information to 

reduce the uncertainty in inferences.  

The procedure proposed assumes that negative information is consistent with the 

classifier probabilistic model. Whenever this is not the case, one alternative would be the 

use of the approach proposed by Destercke [8] that combines negative information to the 

classifier credal sets. If, on the one hand, this course of action might increase the 

inaccuracy of inferences and make the decision making process more difficult; on the 

other hand, it provides a way to explain the discrepancy between the trained model and 

information coming from other sources such as experts, technical reports and meta-

analysis. This problem shall be approached in future studies.  
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Appendix 1  

 

 Collections 

 𝑄(𝐶) ∶  K = {p(C): P(C = n) =
1

3
,   P(C = s) =

2

3
 } 

 𝑄(𝑋1|𝐶): 

o K(X1| C = n) = {p(X1| n): P(X1 = +| n) + P(X1 = −| n) = 1,  0.417 ≤

P(X1 = +| n) ≤ 0.625,0.583 ≤ P(X1 = −| n) ≤ 1} 

o 𝐊(𝑋1| 𝐶 = 𝑠) = {𝑝(𝑋1| 𝑠): 𝑃(𝑋1 = +| 𝑠) + 𝑃(𝑋1 = −| 𝑠) = 1,  0.625 ≤

𝑃(𝑋1 = +| 𝑠) ≤ 1,0.167 ≤ 𝑃(𝑋1 = −| 𝑠) ≤ 0.375} 

 𝑄(𝑋2|𝐶): 

o K(𝑋2| 𝐶 = 𝑛) = {p(𝑋2| 𝑛): P(𝑋2 = 1| 𝑛) + P(𝑋2 = 0| 𝑛) = 1,  0.5 ≤

𝑃(𝑋2 = 1| 𝑛) ≤ 0.8,0.167 ≤ 𝑃(𝑋1 = 0| 𝑛) ≤ 0.5} 

o K(𝑋2| 𝐶 = 𝑠) = {p(𝑋2| 𝑠): P(𝑋2 = 1| 𝑠) + P(𝑋2 = 1| 𝑠) = 1,  0.25 ≤

𝑃(𝑋2 = 1| 𝑠) ≤ 0.458,0.542 ≤ 𝑃(𝑋1 = −| 𝑠) ≤ 0.75} 

 

 

 

 

 

 

 

 

 


