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Abstract: Data mining refers to the process of extract useful information and knowledge 

from a given data set, using statistic techniques and machine learning algorithms.  Due to the 

huge size of data and amount of computation involved in data mining, it is very difficult, 

using current data mining tools, for a single computer to efficiently deal with large data. In 

this scenario, parallel computers and distributed systems can be used to speed up the data 

mining process. This paper presents the FastWeka, a tool for speedup data mining tasks, using 

multicore computers and a peer-to-peer system as computing platform.  By exploiting the 

inherent parallelism of the data mining cross-validation phase (using k-fold technique), 

Fastweka can achieve an improvement in the speed of data mining. Aiming to evaluate the 

tool, a forest cover dataset composed of 55 attributes and 581,012 records was considered as 

input of data mining algorithms. The computing times obtained when using FastWeka reveals 

a speedup of 9 when using 10 folds and 10 processing elements, without jeopardizing the 

classification accuracy. The experiments also show that better speedup values are obtained 

when the number of folds is multiple of the quantity of available processing elements and 

when it is processed only 1-fold per computer of a peer-to-peer system. 

1 Introduction 

Data mining (DM) consists of a set of techniques for the analysis and extraction of 

relevant information from data sets, generating knowledge by means of patterns and trends 

observed in these data. For instance, agricultural data can be used as input to build descriptive 

and predictive models. Predictive or classification models can be used for building 

classification systems for fruit or soil; climate forecast information; analysis of vegetation 

types; detection of diseases and pests. In fact, several works have considering DM techniques 

as a solution for agricultural data analysis.  

Frequently, DM involves developing a classification model, through a process called 

training, which distributes data into a set of some predetermined classes called examples or 

samples. The accuracy of the classifier is measured by using cross-validation, which is a 

largely used and reliable technique for estimating the accuracy of a classification model [1]. 

Cross-validation is based on the concept of partitioning the database into mutually exclusive 

subsets called folds. In the k-fold cross-validation, the original data is randomly partitioned in 

k equal sized subsamples. The k-1 subsamples are used for model training and a single 

subsample is reserved as the validation data for testing the model. This process is repeated k 

times, varying in each repetition the fold used for validation. A mean value, calculated from 

the results obtained in each of the k steps, is used for estimating the quality of the model 

(mean prediction error). The advantage of the k-fold cross-validation is that all observations 

are used for both training and validation, and each observation is used for validation exactly 
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once. The number of folds commonly used is 10, but in general, the value of k is empirically 

chosen. 

The application of data mining algorithms requires the use of software tools. Among all 

data mining software, the Weka (Waikato Environment for Knowledge Analysis) is a 

commonly adopted open source software solution to data mining. The Weka software is a 

collection of machine learning algorithms for data mining tasks. The algorithms included in 

the Weka software package can be applied directly to a dataset to extract useful information 

and to build descriptive and predictive (classification) models. Weka contains tools for data 

pre-processing, classification, regression, clustering, association rules and visualization. 

Data mining software response times are affected by the amount of data stored in the 

database and by the DM algorithm class. Works have shown that DM very often requires high 

processing times, and it is possible to speed up the data mining using parallel computing. 

Parallel computing is the simultaneous and the coordinated use of multiple compute resources 

to solve a computational problem [2]. The compute resources are typically a single computer 

with multiple processor (or multiple cores) or computers connected by a network. When using 

computers connected by the Internet, Peer-to-peer (P2P) systems has emerged as an attractive 

alternative for building systems that provide efficient use of resources, scalability and self-

organization [3]. Basically, the P2P model defines a distributed system as a cooperative set 

of computers, called peers, which share some of their resources with other peers in the system 

without the need for a central server. Through the sharing of processing elements between 

the different peers, it is possible to run parallel applications that are flexible and that can scale 

up by increasing the availability of computing peers. 

Aiming to speedup data mining computing times, this work presents FastWeka. FastWeka 

extends the Weka software using distributed and parallel computing techniques to conduct 

data mining using multicore computers and a P2P system. By exploiting the inherent 

parallelism of the data mining cross-validation phase (using k-fold cross validation), 

Fastweka can achieve a significant improvement in the speed of data mining tasks. Also, by 

using a P2P system, new threads can be created in computers connected by the Internet, 

regardless of the presence of firewalls separating the computers. These advantages of P2P 

systems are directly inherited by FastWeka.  

This paper presents the implementation details and the performance obtained from the 

execution of FastWeka in multicore computers and a P2P system. In the section 2, related 

work is presented. The FastWeka tool implementation details is presented in the section 3. 

The evaluation of FastWeka in an agricultural data set is presented in section 4. The 

conclusions of this work are presented in the section 5.   

2 Related work 

While can be used for mining data from all domains, FastWeka was designed as a tool for 

agricultural data mining. Many authors have addressed agricultural data analysis. For 

instance, in [4], a classifier for Egyptian rice diseases is presented. In [5], DM techniques are 

considered to improve climate predictions. Also, the application of DM on large data sets 

typically involves large computational cost, as showed in [6] and [7]. Furthermore, the use of 

parallel computation to assist the mining of a large number of agricultural data has been 

explored in [8] [9] [10]. 

Authors also have addressed how to speed up the DM process. Pimenta et al [11] 

presented and evaluated a Weka tool extension for parallel data mining in computational grids 

[12]. Talia et al  [13] developed and evaluated the Weka4WS software, which uses a Web 
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Services Resource Framework and allows remote execution of Weka DM algorithms. In a 

similar study, Zuo [16] presents a tool called Weka-Parallel, used for parallel cross-validation 

using TCP communication. More recently, in [14], a distributed framework for Weka is 

presented. The framework is implemented on top of Spark, a Hadoop-related distributed 

framework for big data computing.  

FastWeka follows the inspiration from these tools, but it uses a different approach. The 

system is totally based on threads and does not depend on any software infrastructure to 

execute, as in [11] and  [13]. The FastWeka details are presented in the following section. 

3 The FastWeka Tool 

FastWeka is a parallel implementation of Weka data mining tool 1, version 3.6.4, 

developed by the research group in machine learning at the University of Waikato, New 

Zealand [1]. Weka is an open source software written in Java that can be executed on different 

operating systems (Linux, Windows and Macintosh) and is distributed under the terms of the 

General Public License - GNU GLP. Weka implements a set of machine learning algorithms 

for DM tasks, including algorithms for data preprocessing, post-data processing, 

classification, regression, clustering and visualization. 

FastWeka can operate in two modes: multi-threads, which uses different cores from a 

multi-core processor; P2P, which allows the use of computers distributed over the Internet. 

To implement FastWeka, it was necessary to modify the ClassifierPanel class, which belongs 

to the weka.gui.explorer package of Weka. In addition, the RunLocal and RunParallel classes 

were added and they are responsible for the multi-threads and P2P modes, respectively. 

Additionally, to implement the P2P mode, it was necessary to create classes that interact with 

P2PComp, on which FastWeka is executed.  

The FastWeka are implemented using the P2PComp framework [3]. The P2PComp was 

developed using the JXSE library (an implementation of the JXTA standard [15] and it 

provides: an infrastructure for starting and monitoring parallel applications written in Java 

and a programming library that is included in the source code of the programs executed by 

the framework. P2Pcomp follows the pure P2P model: all peers have the same functionalities, 

so a peer can act as both scheduler, worker or monitoring peer. The P2P network components 

are implemented in Java classes named Peer, Discovery and IPC (See Figure 1). The 

Peer class initiates the execution of JXTA protocols and implements the framework protocol 

messages. A framework message follows a standard format defined in Message class and it 

is transmitted using JXTA sockets. The Discovery class organizes the advertising 

mechanism by publishing information about the peers and searching the advertisements of 

other peers. In a regular time interval, the P2P system is searched for advertisements of new 

peers. The information about all the discovered peers is stored in a data structure managed by 

the Cache class. The IPC class is responsible for the inter-process communication routines 

available for parallel applications. 

  

                                                 
1 Available in: <http://www.cs.waikato.ac.nz/ml/weka/> 
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Figure 1: Main components of the P2PComp framework 

The P2PComp defines that a parallel application is composed by cooperating tasks that 

execute the same source-code, according to the SPMD (single program multiple data) model. 

Also, the parallel tasks can exchange information by message passing. Each task of the 

application is identified by an integer number ranging from 0 to the total number of tasks. 

The task identifier is called rank, and it is used to specify the recipient when communicating 

with another task. 

After choosing the group of peers that will execute the application, the framework sends 

the application encapsulated in a serialized Java class to all peers that will execute it. In the 

context of P2PComp, a parallel task is called a task, and the peer that initiates the execution 

maintains a copy of the tasks sent to other peers in a class named RemoteJob. 

When a peer receives a new task, it stores the task in a queue defined in the class 

JobQueue and waits for configuration messages that inform the relation between 

application tasks and ranks. The ranks are used for exchanging messages among the tasks, 

and the peer must know the ranks of the tasks that it is executing. 

For the implementation of FastWeka, the parallelism was applied on the cross-validation 

process. As discussed in the previous section, this technique performs k steps, which do not 

depend on each other and have a high computational cost. By distributing these steps to 

several threads, it is possible achieve great performance improvement.  

During the execution of FastWeka, the number of steps and threads are defined by the 

user when the ClassifierPanel class is executed. In multi-threads mode, the threads are 

mapped to processor cores, using the RunLocal class. In P2P mode, the RunParallel class is 

activated and distributes the threads to the processing elements that are available on the P2P 

network. 

4 Evaluation 

For evaluating the FastWeka tool classification performance, a data set2 with 581,012 

records which describes a forest cover vegetation was used as input data. Each record contains 

55 attributes, such as: elevation, aspect and slope of the land, solar incidence, distance to 

water and vegetation type. This data set was obtained from the areas of Rawah (29,628 

hectares), Comanche Peak (27,389 hectares), Neota (3,904 hectares) and Cache la Poudre 

                                                 
2 BLACKARD, J. A. Covertype Data Set. fev. 2012. Available in: 

<http://archive.ics.uci.edu/ml/datasets/Covertype> 



Iberoamerican Journal of Applied Computing                                  ISSN 2237-4523 

V.7, N.2, Dec/2017                                                                                                                    Page 37 

(3,817 hectares), located approximately 113 km northwest of the city of Denver, Colorado, 

United States, in the Roosevelt National Forest [6]. These forest areas were selected because 

they remain relatively unchanged, with little human influence, and they represent a composite 

of forest cover types generated from natural evolutionary processes. 

The DM processing performed in this work is made on the "type of forest cover" attribute, 

which is defined as a target attribute and can have 7 possible values: spruce/fir, lodgepine 

pine, ponderosa pine, cottonwood/willow, Douglas-fir, aspen and krummholz. The 

krummholz cover type is composed of Engelmann spruce, subalpine fir and Rocky Mountain 

bristlecone pine. The DM was performed for creating a classifier for forest cover types, to 

make predictions about the possible coverage that can occur in certain areas according to the 

measured values of the 55 attributes defined in the original data set.  

Initially, all the 581,012 records were grouped into a single data set, from which seven 

subsets were created, based on the type of forest cover type. From the analysis of the 

partitioned data set, it was observed that only two types of forest cover accounted for about 

85.22% of all data. To create a more homogeneous model, it was determined that the sets of 

test and validation data would be built from a data set composed by an equal number of 

observations of all the types of forest cover. 

The number of observations of each forest cover type was defined based on the class with 

least representation in the database, which had 2,747 records. Therefore, 2,747 observations 

were randomly selected for each type, obtaining a total of 19,229 observations. A supervised 

classification was performed in the selected data by running a multilayer artificial neural 

network (ANN), known as MultiLayer Perceptron, generating a model for classifying forest 

cover types within each of the 7 defined classes. 

 The parameters used on the ANN algorithm were set according to [6], which defined 

them through practical experimentation: 1 single hidden layer with 120 neurons; 

backpropagation algorithm with learning rate of 0.05, momentum rate of 0.5 and number of 

training epochs equal to 1000. For the cross-validation, it was chosen 2 values for the number 

of folds: 10, default choice for cross-validation evaluating, and 24, the total number of 

processing elements used in the experiments. With all the parameters defined, FastWeka tool 

was executed varying the number of folds and processing elements. The obtained results are 

shown in the next section. 

5 Results and Discussion 

The experiments were performed on 6 computers, running Linux with kernel version 2.6.37, 

with the following configuration: Intel processor core I7 - 2600 3.4 GHz with 4 real and 4 

virtual cores with Turbo Boost Technology enabled; memory of 4 GB DDR3; Gigabit 

Ethernet network interface connected to a local network.  

The next subsections present the performance results obtained from the execution of 

FastWeka, in multi-threads and P2P modes, and the accuracy of the results obtained by the 

classifier. All the performance values measured were statistically compared, with the intent 

of proving the real difference between the obtained mean values.  

For all the experiments, sequential and parallel runtimes were calculated, and from them 

it was obtained the speedup. The speedup is used to measure how much a parallel algorithm 

is faster than a sequential one, and it is calculated by dividing the sequential by the parallel 

execution time. Ideally, the speedup should have a value close to the number of processing 

elements used. 
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5.1 FastWeka using Multi-threading 

The experiments showed in this subsection were performed in a single computer, so the 

maximum number of threads generated is 8, as each CPU have 8 cores and each core executed 

only one thread. The Table 1 presents the results of the execution of DM using 10 folds and 

varying the number of threads among 2, 4, 6 and 8. In this case, there was a good performance 

improvement in all the configurations. For 6 and 8 threads, the performance improvement 

was less significant, due to the hyperthreading enable processors (the 8-core processor used 

has 4 physical cores). 

 

Table 1:  Multi-threading with 10 folds 

 

A graphical representation of the runtimes measured using 10 folds is showed in the 

Figure 2. The Table 2 shows the results obtained using 24 folds and 2, 4, 6 and 8 threads. As 

it can be seen, when compared to the experiment performed with 10 folds, a similar 

improvement of performance was achieved, but with a better speedup when 4 threads were 

used. The runtime of a cross-validation step is the same because the folds have the same size. 

Therefore, 4 cores perform 4 steps at the same time. If 10 folds are processed, then 10 steps 

are performed. The first 8 steps are processed at the same time (2 steps per core), but the last 

two will only use 2 cores, underusing the processor. As 24 is a multiple of 4, the division of 

steps is exact between the different cores, maintaining the processor fully used all the time. 
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Figure 2: Multi-threading with 10 folds 

Table 2: Multi-threading with 24 folds 

 

The Figure 3 shows the graphical representation of the measured execution times with 24 

folds.  

5.2 FastWeka on a P2P network 

This section presents the results obtained using FastWeka on P2P mode with different 

computers. Each component of a P2P network is called a peer, and, in this work, each 

processing element runs a single (1) P2PComp peer.  

When using a P2P network, a peer is responsible for starting the application and 

distributing the folds to the other peers, because, in the P2PComp computing model, the peer 

which starts a job cannot execute tasks from this job. It is important to point out that, in all 

the experiments discussed in this section, one of the peers does not perform any processing. 

The existence of this additional peer decreases the speedup, but it will not negatively affect 

the runtime if there are sufficient peers for all the cross-validation steps. 

When setting up a P2P network, it is possible to initiate peers on each core of the 

processor, or it can be defined that each computer will execute just 1 peer. When the 

processing involves different computers, one issue that may influence the final runtime is the 

communication overhead generated by the distribution of the folds for all the peers that will 

participate in the processing. 
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With the intent of measuring this possible communication overhead, the table 3 presents 

the results obtained by using 4 processing peers distributed in 4 cores on the same computer 

and in 4 different computers. 

  

  

Figure 3: Multi-threading with 24 folds 

 

Table 3: P2P-mode with 10 folds in computers and cores 

 

The distribution in different computers, in despite of the communication overhead, 

allowed better performance than the distribution in different cores. The competition for 

multiple cores and for the same resources can affect the performance, so it is preferable to 

use all the available computers before using different cores of the same computer.  Table 4 

and Figure 4 show the results obtained by using 10 folds and varying the number of computers 

to 3, 5, 7, 9 and 11. The same experiments were made with 24 folds, and the results are 

showed in Table 5 and Figure 5. 

Table 4:  P2P network with 10 folds
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Figure 4:  P2P network with 10 folds 

All the runtime values obtained in this section (with 10 or 24 folds) show that the inclusion 

of new peers always improves the speedup, showing that this kind of application can 

effectively use a computational system that easily scale up.  

  

Table 5:  P2P network with 24 folds

 

  

Figure 5: P2P network with 24 folds  
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In Table 6, is presented the qualitative results of the generated classifier, using 10 or 24 

folds, expressed by: accuracy percentage and the Kappa statistics. A classifier is a prediction 

system, and the Kappa index measures the difference between the predictions made by the 

proposed classifier when compared to a reference ideal classifier. 

  

Table 6: Qualitative information about the obtained classifier 

 

The Table 7 shows the measured AUC, that is the area under the ROC (Receiver Operator 

Characteristic) curve. The ROC curve shows how the number of correctly classified examples 

varies with the number of incorrectly classified examples. While ROC is a two-dimensional 

representation of a model performance, the AUC reduce this information into a single scalar. 

As the name implies, it is calculated as the area under the ROC curve and a perfect model 

presents an AUC score equal to 1. As it can be seen in the Table 7, for 10 or 24 folds, all 

results are above 0.9 and near to 1. 

  

Table 7: Area under ROC curve (AUC) and classification precision 

 

Observing all the quality indexes, it can be noted that the number of folds has no 

significant influence on the accuracy of the classifier. On the other hand, there is a 

considerable difference when the runtime is considered. This fact shows that is preferable to 

use less folds when dividing the data set, as the quality is assured, and the execution time is 

considerably decreased. The ideal scenario is to use enough computers (peers) so each cross-

validation step is processed in a different computer. 

6 Conclusions 

In a context of a continuous growth of the size of data sets and of the time spent for 

processing it, this work presented the FastWeka tool, which enables the parallel execution of 

DM tasks. The use of FastWeka, in multi-threads or P2P mode, allowed a satisfactory 

decrease in runtime, and the performance evaluation performed in this paper also showed that 

it is not necessary to divide the datasets in many folds. From experiments results, it is possible 

to obtain better performance when the number of folds is multiple of the quantity of available 

processing elements, especially if it is used only 1 core per computer. The classifier for types 

of forest cover that was created using FastWeka obtained a good level of accuracy, reaching 

a level of 82.79%, using only 10 folds. As a conclusion, it can be pointed out that is possible 

to run DM tasks on agricultural data with efficiency, quality and scalability using FastWeka 

on single computers or P2P systems.  
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