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RESUMO 

Several stages of a mining enterprise depend on the existence of a geological model. Each of these steps is 

conducted by professionals  who  based  on  this  model,  perform  tasks,  and  make  decisions  and  plans. 

However, it is built from a sample dataset, and is therefore subject to uncertainties, which can be reduced 

with the accuracy of the data and the choice of a modelling method appropriate to each type of deposit. The 

purpose of this work was to analyze comparatively three methods for the elaboration of digital solid models, 

which involved manual, geostatistical and implicit modelling methodologies .The data used come from 

surveys of an iron ore deposit. The lithologies modeled were hematite and itabirite. The manual modelling 

was built through the parallel section method, which is based on interpretations that depend on the 

geological knowledge and the experience of the professional. However, the main problem that arises in this 

context is that many interpretations can be viable, making the method subjective. The elaboration of the 

geostatistical modelling was through the indicator kriging technique, which partly depends on 

interpretations, but the result is based on statistical principles, being less subjective than the manual method. 

Finally, implicit modelling, which uses radial-based functions, is performed “automatically,” so it does not 

offer the opportunity to add professional knowledge and experience. The results obtained in this research, 

using the mentioned methodologies, showed similarities in the determination of the models between the 

lithological contacts, but there were significant divergences in quantitative terms. Thus, it can be concluded 

that a fast automatic model can help in the interpretation or point out regions where more samples are 

needed, and that there may be interactivity between the professional who performs the interpretation of the 

sample data and the methodologies used, so that they can assist in the geological modelling process. 

Keywords: geological modelling, indicator kriging, parallel sections, radial base functions. 

 

 
1. Introduction 

Geological modelling is the process used in the reconstruction of a mineral 

deposit and originates a three-dimensional virtual model, so that it establishes viable and 

facilitating conditions to know the behavior of the phenomenon under investigation, in 

order to make it qualitative and quantitative describable. A 3D modelling provides an 

overview of the mineral deposit as well as determining the extent, geometric pattern, 

location and spatial distribution of mineralization. 

Mining enterprises have several peculiarities, which differ them from other 

industrial enterprises. Among them, we can highlight a very long maturation time. This 

time may take years or even decades, necessarily going through several steps, from 

surface mapping to production (Serra, 2000). One of the most complex stages of this 

process is the evaluation of deposits in which many studies are conducted for determining 

the viability of a mining enterprise. Generally, these studies are conducted by a 

multidisciplinary team, which depends on the existence of a geological model to elaborate 

technical, economic and environmental projects. This model is also fundamental in mine 

planning, so it is essential that it is as accurate and true as possible. 
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However, this model is built from a sparse sample data obtained from core 

boring. Generally, sampling campaigns are always planned with a cost / benefit ratio, 

which is, try to avoid oversampling errors that would lead to cost increase, and could 

make the implementation of the process unfeasible, as well as subsampling errors that 

could lead to increased estimation process uncertainty. Thus, the total sample volume is 

usually very small in relation to the deposit size, just enough to guarantee the 

representativeness of the variables under investigation. According to Yamamoto (2001), 

the entire sampling-based estimation process is subject to error. 

As a result, building geological models requires interpolation to estimate 

variables where the attribute has not been sampled. Different interpolation methods are 

available; they can be either classic or computational. In classical methods data estimation 

is based on interpretation principles, whereas computational methods use mathematical 

functions in estimation (Yamamoto, 2001). Finally, the quality of this model will depend 

on the accuracy of the data and the choice of an appropriate estimation method for each 

type of deposit. 

Currently, there are technological tools that can do modelling “automatically”, 

however, do not offer the opportunity to add the knowledge and experience of the 

professional. 

The main objective of this work was to perform a comparative analysis between 

three geological modelling methods: 

 manual modelling: using the parallel section method. The definition of 

ore body geometry is based on personal appreciation, and the result is 

influenced by the geological knowledge and experience of the 

interpreter. However, the main problem that arises in this context is that 

many interpretations can be viable, making the method subjective; 

 geostatistical modelling: the indicator kriging technique was used in the 

interpolation of the lithological data. To use of this technique is necessary 

understanding and specialized judgment regarding the geological 

knowledge of the deposit, but the final result is based on statistical 

principles, being thus less subjective than the manual method; 

 Implicit modelling: this method uses radial base functions in the 

interpolation process. The model is built from the definition of a 

continuous three-dimensional function, which represents the lithological 

distribution. In this case, the geological knowledge and the experience of 

the professional have little influence on the result. 

All three methods were tested using drillhole data from an iron deposit located 

in the Quadrilátero Ferrífero region. Micromine software was used to model the 

mineralization related to hematite and itabirite bodies. 

 

 

2 State of the Art 

2.1 Geology of Quadrilatero Ferrifero 

Quadrilatero Ferrifico (QF) is located in the south-central region of the state of 

Minas Gerais. Currently, the rocks of the region are grouped, due to common 

characteristics, into three main units: the granite-gneiss complex, Rio das Velhas 
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Supergroup, both of Archean eon, and Minas Supergroup, related to the Paleoproterozoic 

eon. In this way QF comprises several geological units formed at different times in the 

past and progressively got closer or overlapped geographically (Uhlein & Noce , 2012). 

In image 1, the geological map is presented, where the main lithologies that occur 

regionally can be observed. 

 

 
Image 1 - Simplified geological map of Quadrilatero Ferrifico. Source: Alkimim & Marshak (1998). 

 
2.1. 1 Granite-Gneiss Complex 

It emerges in two regions in the Quadrilatero, in the center of the QF (Bação 

Complex) and surrounding the QF region. The granite-gneiss rocks are mainly made up 

of banded gneisses, of tonalitic to granodioritic composition that show migmatization 

features .Gneisses are rocks made up of minerals such as quartz, feldspar and biotite, 

arranged in alternating color bands, from light gray, rich in quartz and feldspar, to dark 

bands rich in biotite. These gneisses resulted from the metamorphism and deformation of 

granitic rocks that crystallized mostly around 3 billion years ago (Uhlein & Noce, 2012). 

2.1.2 Rio das Velhas Supergroup 

It consists of volcanic (mainly basalt) and sedimentary rocks. Subsequently, this 

group of volcano sedimentary rocks underwent an orogenetic process, with 

metamorphism and folding. Thus, basalts and sediments were transformed into various 

types of schists (metamorphic rocks). 

Rio das Velhas Supergroup comprises a basal unit, Nova Lima Group. This unit 

is composed of a combination of volcanic and sedimentary rocks, metamorphosed to a 

low degree (Uhlein & Noce, 2012). 
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2.1.3 Minas Supergroup 

Minas Supergroup can be subdivided into three units: (basal clastic unit) Caraça 

Group, (intermediate chemical unit) Itabira Group and (top clastic unit) Piracicaba Group. 

Itabira Group starts at Cauê Formation, composed of itabirites (banded iron ore 

formations). The itabirites are quartz or dolomitic and contain lenticular bodies of 

hematite (rich in iron ore). Gandarela Formation, at the top of the group, shows dolomitic 

marbles, subordinate itabirites and phyllites .Piracicaba Group basal unit, Cercadinho 

Formation, is characterized by the alternation of quartzites and phyllites, often 

ferruginous. Fecho do Funil Formation consists of quartz phyllites, dolomitic phyllites 

and dolomite lenses. Taboões (orthoquartzitos) and Barreiro (graphite phyllites) 

formations have restricted occurrence (Uhlein & Noce, 2012). 

At the top of Minas Supergroup is Sabará Group, consisting of chlorite-schists 

and phyllites, metagraywackes, metatuff, metaconglomerates and quartzites. Itacolomi 

Group, which covers Minas Supergroup, is restricted to an area south of Ouro Preto, 

where it forms the quartzite mountain with the same name (Uhlein & Noce , 2012). 

Espinhaço Supergroup overlaps Minas Supergroup and is composed of quartzites, 

metaconglomerates and phyllites (Takehara, 2004). 

2.2 Manual modelling 

Manual modelling is also known as the parallel section method. The geometry 

of a mineralized zone is illustrated in a series of vertical or horizontal sections that 

systematically intersect the ore body .The vertical sections usually coincide with the 

drillhole lines. The horizontal sections are generated at certain levels or dimensions; they 

are built based on the interpolation of the already interpreted vertical sections information. 

These sections are usually interpreted manually, using modelling software or even a 

drawing board, having the survey data and comparisons with genetically similar deposits 

in hands, the vertical and horizontal sections outlining mineralization and wall rocks are 

generated. The spatial union of these sections will result in a three-dimensional model of 

the ore body (Souza, 2007). 

According to McLennan & Deutsch (2007), the parallel section method is an 

explicit method of geological modelling. Although the method is quite clear, there are 

important limitations, including significant time consumption, subjectivity rather than 

repeatability, inflexibility and inability to access the uncertainty limit. 

Simple 

Although the procedure is arduous, the explicit method of scanning polygons in 

various cross sections is definitely simple. In fact, this is the main reason for its popular 

use. 

Long 

The 2D contour lines and connecting lines drawing takes a huge amount of time. 

It is very common for a professional to spend up to three months developing a geological 

model. 

Subjectivity and non-repeatability 

The mineralization volume is essentially composed of prolonged series of small 

subjectivities and deterministic decisions, such as each corner of the contour line of each 

cross section that is chosen by the professional performing the modelling. Inevitably, an 

interpreter's signature is provided to the limit. For example, geologists, geophysicists, and 
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engineers can all consistently generate models, significantly different models with the 

same information. Thus, there is a need to generate objective contour surfaces. 

Inflexibility 

It is very difficult to update a geological model about the advent of new drillholes 

or new information. Typically, modifications are made to campaigns. 

Unreachable Uncertainty 

It is difficult to assess overall uncertainty at these geometric boundaries between 

sample data. This uncertainty can be a major source of insecurity in many situations. For 

example, in a gold deposit, the volume of mineralization is a vital economic indicator for 

project management. Ignoring volumetric uncertainty, considering only an explicit 

modelling boundary can devastate the venture. 

Geologically realistic 

Although all these limitations of the manual method, the resulting boundaries 

will be geologically realistic especially when interpreted by the same professional. There 

is direct control of this goal in the scanning process. There is no simple way to incorporate 

multiple possible contour realizations representing uncertainty. This is in fact the single 

most important limitation of the method. 

2.3 Geostatistical Modelling 

The geostatistical modelling process involves the estimation of spatial 

variability, which aims to detect areas where ore concentrations exist and can be 

delineated. The study of this spatial variability is performed by applying techniques on 

georeferenced data .Among the techniques used in the study of spatial variability; we 

highlight Geostatistics, which is based on the Theory of Regionalized Variables. 

The basics of geostatistical methodology can be based on the following context: 

“The distribution of a given mineral asset within a deposit is mixed in nature, partly 

structured and partly random. On the one hand, the mineralization process has a global 

structure and follows some laws, geological or metallogenetic: in particular, rich and poor 

class zones always exist, and this is only possible if class variability has a certain degree 

of continuity. Depending on the type of ore deposit, this degree of continuity will be more 

or less demarcated but it will always exist. However, mineralization is never so chaotic 

that it excludes all forms of forecasting, nor is it sufficiently regular enough to allow the 

use of a deterministic forecasting technique” (Journel & Huijbregts, 1978). The 

geostatistical estimation process considers both the structured and random aspect inherent 

in any mineral deposit. Matheron proposed the name Geostatistics to designate a 

methodology that reconciles these two aspects (Journel & Huijbregts, 1978). 

Geostatistics designates the statistical study of natural phenomena, often 

characterized by the spatial distribution of one or more variables, called regionalized 

variables (Journel & Huijbregts, 1978). Geostatistics has the objective the study and the 

structural representation of regionalized variable to solve estimation problems, based on 

measured experimental data through drillholes that do not fully cover such areas 

(Yamamoto Landim, 2013). 

A regionalized variable, besides having the spatial continuity property, may have 

the following attributes: location, anisotropy, transition and zone of influence. In the study 

of these variables behavior there are two fundamental tools of geostatistical methods: 

variogram and kriging (Landim, 2003).The first geostatistical studies were started by 

Krige in the 1950s and conceptualized in Matheron's several studies in order to 
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provide accurate estimates of local levels of the mining blocks, eventually developing the 

formalization of geostatistical methodology (Yamamoto & Landim, 2013). 

Variogram 

Variogram is nothing more than a spatial correlation function that represents the 

basis for estimating spatial variability in geostatistics (Yamamoto & Landim, 2013). This 

is used to assess the spatial behavior of the regionalized variable, in terms of influence 

zone on a sample, anisotropy directions, and the degree of data continuity related to 

distance (Gringarten & Deutsch, 2001). Through variogram, it is possible to measure the 

degree of similarity between neighboring samples. Because it is expected that the closer 

these samples are collected, spatially or temporally, the greater the similarity between 

them is, and, therefore, the smaller the variance and the greater the spatial or temporal 

correlation, and the farther away the lower the resemblance will be, until these differences 

are attributed only randomly (Vilela, 2004). 

According to Landim (2003), the variogram is built from a value range obtained 

from  samples  collected  at   regular   intervals   within   the   same   geometric   support. 

Being 𝑥1,𝑥2,, 𝑥𝑖, … 𝑥𝑛,, realizations of a regionalized variable and considering that the 

influence of each sample is greater the smaller the distance between the sampled points, 

it is necessary to define the distance vector ∆h which has specific orientation. Thus, the 

variogram function is calculated as the average of the differences between points 

separated by a distance h, according to the formula: 
 

𝑛 
1 

Υ(ℎ) =  ∑(𝑧(𝑥) −  𝑧(𝑥+ℎ))2 
2𝑁 

𝑖=1 

(2.1) 

Where Υ(ℎ) is the variance of data pairs separated by distance ℎ, (ℎ) , is the 

distance between the data that forms a pair, 𝑍(𝑥) he value of the variable in position 𝑥, the 

value of the variable separated by the vector ℎ and N is the number of pairs found for each 

distance ℎ. 

With the construction of a graph confronting variance versus distance, the 

experimental variogram is obtained (Image 2), which needs to be adjusted to a theoretical 

model. This adjustment is called variographic modelling and consists of defining a 

mathematical function that represents the behavior of the data as distance function for any 

distance h. The most used mathematical models are exponential, spherical and Gaussian 

(Souza, 2007). 
 

 
Image 2 - Typical variogram model Vilela (2004). 
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The difference between the values (𝑧(𝑥𝑖) − 𝑧(𝑥𝑖+ℎ))2, average, is increasing with 

the distance to a certain point, from which it stabilizes at a value called sill (C0+C1) and 

is approximately equal to the data variance. The level indicates the value by which the 

function stabilizes in the random field, corresponding to the distance “a” called range, and 

shows the maximum variability between pairs of values (Landim, 2001). The source 

discontinuity is called the Nugget Effect (C0) and as Journel & Huijbregts (1978) would 

be due either to measurement errors or to microvariability of mineralization. 

The study is done in one direction along one line or along a series of parallel 

lines, using n possible differences at intervals h or multiples of h. In addition to distance 

and direction, additional parameters need to be defined, for each data point, a window is 

determined, within which there can be one or more points, or none at all. This window is 

defined by direction, angular tolerance and maximum width, as well as step size (distance) 

and step tolerance. The maximum width parameter aims to limit the indefinite opening of 

the search window given by angular tolerance (Yamamoto & Landim, 2013). 

Variographic modelling is the first step in applying kriging, and it is the 

parameters obtained by variogram that control the distribution of Kriging weights, which 

will influence the interpolation of data (Souza, 2007). 

Kriging 

Kriging is the geostatistical process of estimating the values of variables 

distributed in space and / or time, based on close values when considered interdependent 

by variogram. When compared with traditional estimation methods, only kriging presents 

unbiased estimates and the minimum variance associated with the estimated value. 

Kriging is named after mining engineer Daniel G. Krige who pioneered the application 

of statistical techniques in mining assessment (Yamamoto & Landim, 2013). 

Kriging provides, in addition to the estimated values, the error associated with 

such an estimate. It is an estimation method based on a series of regression analysis 

techniques, either linear or nonlinear transformations. Thus, kriging techniques can be 

divided into linear and nonlinear. One technique is said to be linear when the continuous 

variable is kept at the original scale such as simple, average, and ordinary kriging; and 

nonlinear when nonlinear data transformation occurs, such as multigausian, lognormal 

and indicator kriging (Yamamoto & Landim, 2013). 

Data transformation is required under various circumstances for geostatistical 

estimation. Although these transformations change the values of average and variance, 

the goal is to modify the shape of the frequency distribution. Transformations are made 

by means of a mathematical function that assigns each value x a new value f (x) 

(Yamamoto & Landim, 2013). 
 

𝑌 = 𝑓(𝑥) (2.2) 

 
Indicator Kriging 

Indicator kriging is a nonlinear interpolation method that consists of applying 

Ordinary Kriging over a transformed variable, that is, the variable resulting from the 

application of a dichotomy indicator function (Landim and Sturaro, 2002). 

Ordinary kriging is a widely used local estimation method for the simplicity of 

the results it provides. Where the estimation at an unsampled point is made by the linear 

combination of values found in the near vicinity (Yamamoto & Landim, 2013). The 

ordinary kriging estimator is: 
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𝑛 

𝑍∗(𝑥0) = ∑ 𝜆𝑖𝑍(𝑥𝑖) 
𝑖=1 

 
(2.3) 

The first step in the indicator kriging is the transformation of the original data 

into indicators, any type of variable becomes a categorical variable 0 or 1. 

The methods that use the concept of indicators are an appropriate alternative for 

lithology modelling, as they are categorical variables measured at nominal scale. This is 

also a well-accepted technique for estimating extreme or biased values (Souza, 2007). 

According to Yamamoto & Landim (2013), a continuous random variable can 

be discretized in relation to a reference value, cutoff content. Categorical variables, 

measured at nominal or ordinal scale, have a discrete number of types and can be 

discretized into k types by binary coding as follows: 

0, 𝑠𝑒 𝑍(𝑥) ≠ 𝑡𝑖𝑝𝑜 𝑘 
𝐼(𝑥, 𝑘) =  {

1, 𝑠𝑒 𝑍(𝑥) = 𝑡𝑖𝑝𝑜 𝑘 

Kriging variances, being conditioned only by the geometric arrangement of the 

points and therefore independent of the sample values, are usually not measures that allow 

the degree of precision of the local estimate to be established. To fulfill this need one of 

the pointed out solutions is the indicator kriging, In this case, the focus is not to estimate 

a certain value, as in ordinary kriging, but to define areas that are more or less likely to 

occur (Landim & Sturaro, 2002). 

2.4 Implicit Modelling 

Implicit modelling is a method of mathematically fitting a surface to a series of 

known data points. This adjustment process involves the interpolating of this surface 

between these points. One way to do this is to get function values at some discrete points 

in the gap of interest. Then a simpler function can be developed to adjust this data. This 

application is known as curve fitting (Bertolani, 2010). 

Among the advantages of implicit methods, we can highlight the lower noise 

sensitivity  and  the  ease  of  combining   implicit   functions   for   modelling   purposes. 

However, the same features that make implicit methods robust against noisy and 

incomplete data can produce undesirable smoothing on surfaces. In addition, it is often 

difficult to achieve local control over distance functions (Polizelli, 2008). 

The implicit modelling technique used in this work makes use of radial base 

functions (RBF) as an interpolation method. 

Radial Base Functions (RBF) 

RBFs are functions which value depends solely on the radial distance between a 

base point and a field point, which may also be another base point. Some properties that 

guarantee the potentiality of the RBFs are evident: the angular symmetry is the most 

important, since the value of the function depends only on the distance from the argument 

to the base point and any rotations do not influence its result. Another important factor is 

that their values can always be positive. However, other factors may become equally 

interesting: often decay and smoothness characteristics may be appropriate, and in this 

sense, there are several classes of functions that can be  adjusted  to  these  requirements. 

The interpolation method with radial functions is one of the techniques used in 

multidimensional interpolation, which become interesting options to develop due to its 

ease of implementation, fast computational processing and results accuracy (Bertolani et 

al , 2010). 
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The problem of surface representation or reconstruction can be expressed as 

follows: 

 

Data n distinct points {(𝑥𝑖, 𝑦𝑖, 𝑧𝑖)}n on a surface  M in ℛ3, find a surface M’ that 

is a reasonable approximation M (Carr et al,2001). 

Definition: according to Bertolani (2010), a function φ∶ ℛ𝑛 → ℛ is called radial 

as long as there is a single argument function, 𝜑 ∶ [0, ∞] → ℛ such that 
 

φ(x) = 𝜑(𝑟) (2.4) 

where 𝑥 ∈ ℛ𝑛 and ‖𝑥‖ is the Euclidean norm of space ℛ𝑛. 

To simplify the notation is called 𝑟 =∥ 𝑥 − 𝑐 ∥, which interpretation is the 

distance from the point defined by the vector o 𝑥 to the point c and by convention 𝑟 =∥ 
𝑥 ∥, there is an infinite number of radial base functions, only a few are commonly used in 

different applications. The radial base functions that are most used in the interpolation 

method are called kernels, and below Table 1 presents the main kernels (Wright, 2003). 

 
Table 1- Most common radial base functions. 

 

Function Equation 

Gaussian (G) 𝜑(𝑟 )  = ℯ−𝑐
2𝑟2

 

𝑖 𝑖 

Thin Plate Splines (TPS) 𝜑(𝑟𝑖) = 𝑟4 log ( 𝑟𝑖) 
𝑖 

Cubic (C) 𝜑(𝑟𝑖) = 𝑟3 
𝑖 

Mult-Quádric (MQ) 
 

 

𝜑(r𝑖) =  √𝑐2  + r2 
𝑖 

 

RBF as interpolator method 

Interpolation with the use of radial base functions focuses, from known data, the 

reproduction of unknown functions (Bertolani , 2010).Using proper radial base functions, 

the interpolation function can be written like this ( Turk & O'Brien, 2002): 
 

𝑛 

𝑓(𝑥) = ∑ 𝜆𝑗𝜑 (‖𝑥 − 𝑐‖) + 𝑃(𝑥) 
𝑖=1 

(2.5) 

where n is the sample size, 𝜆𝑗 are weights and 𝑃(𝑥) is a polynomial of degree m. 

A restriction placed on the coefficients is: 
 

𝑁 

∑ 𝜆𝑗 𝑃(𝑥𝑖) = 0 
𝑖=0 

(2.6) 

As {𝑝1, … , 𝑝𝑙} a base of polynomial 𝑝𝑖 maximum degree m and {𝑐1, … , 𝑐𝑙} the 

coefficients that describe P in the base, equations 2.4 and 2.5 can by whitten though the 

linear systen 
 

( 𝐴 𝑃 𝜆 𝑓 

𝑃𝑇 0
) (

𝑐
) = (

0
) 

(2.7) 
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where 𝐴𝑥,𝑐 =  𝜑 (‖𝑥 − 𝑐‖) , 𝑃𝑥,𝑐 =  𝑝𝑐(𝑥), and  f  is the value of function to by determined at 

points of the sample. 

As all points of sample S are located on the surface and therefore present 

𝑓(𝑥𝑖) = 0, new points need to be added to the system to avoid trivial solution 𝜆𝑖 = 0 for 

any i. These points are generated from each point 𝑥 𝑖 moving in the direction of the normal 

vector (Turk & O'Brien, 2002). 

Off-surface points are assigned positive values, while inside points are assigned 

negative values (Carr et al, 2001). 

In the geological modelling process, according to Cowam et al (2003), it is 

necessary to define one of the lithologies to represent positive values of the function and 

others to represent negative values. Then, lithology data sampled by drillholes is 

converted from the lithological code to numerical values. Thus, a value of zero is assigned 

to the points located between the contact surfaces. Which can now be treated as a scattered 

data interpolation problem. Since the data is interpolated at the places where the points are 

zero, a function can be extracted from the contact surface between the two lithologies. 

Also according to this same author, the RBF interpolation process is similar to 

the interpolation process using kriging .The difference between kriging and RBF 

interpolation is that kriging uses the covariance function obtained from the data (the 

variogram) and RBF uses a basic function that is chosen from a standard range of 

functions. 

 

 

3 Materials and Methods 

3.1 Database 

To test the proposed methodologies, we used a database that has 254 drillholes 

that originated 2,171 samples, and data resulting from chemical analysis and geological 

description. The holes are vertical with depths ranging from 4 to 334 meters distributed 

in semi-regular mesh in the center and irregular in the periphery. The average sample size 

along the hole is 10 meters. Image 3 shows the drillhole location map. 
 

 
Image 3-  Sample location map. 
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Three lithological classes are described, hematite, itabirite and yoke. Only data 

referring to the two modeled classes I (itabirite) and H (hematite) were selected. 

Geological modelling was performed using Micromine , a modular software for 

exploration, 3D geological modeling, resource estimation, mine planning and design, pit 

optimization and resource allocation. 

With the Micromine software input database ready, they were imported and 

validated by the program, and the deposit modeling process began. 

3.2 Manual Modelling 

The domain area of the samples was divided into vertical sections along the N- 

S direction trying to match the drillhole lines, totaling 30 sections with line spacing 

ranging from 20 to 50 meters in the most central region. The set of holes with their 

respective lithologies represented in each profile constituted a section, thus allowing the 

visualization of the lithological contacts. Each lithology was designed respecting the 

spatial distribution of the samples (Figure 4). 
 

 
Image 4 - Vertical section 11 containing their respective holes and geological interpretations. 

 

The horizontal sections were generated from dimension 600 to dimension 1020, 

and the interpretation of these sections was based on the envelopes of the vertical sections 

already interpreted. To facilitate modelling and avoid “empty” spaces between 

lithological domains, the sections were overlapped drawn (Image 5). The spatial union of 

these sections resulted in two solids, consequently with intersections, which were 

eliminated using the hematite model to cut the itabirite model. 
 

 
Figure 5- Interpreted horizontal section dimension 820. 

Hematite 

Itabirite 

Hematite 

Itabirite 
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3.3 Geostatistical Modelling 

All samples corresponding to the itabirite lithology, received the value 1 as an 

indicator, meaning that in the samples located at these points the probability of occurrence 

of itabirite is 100%. The other samples corresponding to hematite and yoke received the 

value 0 as an indicator, that is, the probability that they are present at these points is null, 

and they are treated without any distinction at this stage in which the itabirite is being 

modeled. The same procedure is adopted for mineralization of hematite bodies. 

The variograms were generated using Micromine software, the first one 

calculated along the hole to define the nugget effect, considering that the shortest distance 

between the samples is along the hole. The parameters for variogram calculations were 

the same for both lithologies, being the number of lag equal to 10, lag equal to 100, band 

size 50 and angular tolerance 10 °.The continuities of the variables were analyzed in eight 

directions, that is, from 0 ° to 157.5 °.0 

The most continuous directions for hematite and itabirite mineralization are 

shown in Images 6 and 7. 
 

 

Image 7 - Continuity analysis graph for hematite mineralization. 

 

 
Image 7 - Continuity analysis graph for itabirite lithology. 
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Like any interpolating method, the kriging method generally uses a point grid or 

a block model, which is filled with the estimated values. In this study, a block model with 

dimensions 50x50x10 meters was used. 

In addition to the control over the spatial behavior of values given by 

variographic modelling, there is also, the control over how data used to estimate each grid 

point is selected. This control is called the search strategy, where some parameters define 

how much data will be used, how far away from the estimated point the search will be 

made and even in which direction this search radius will be larger or smaller (anisotropy). 

Table 2 presents the search parameters used in the indicator kriging by Micromine 

software. 

 
Tabela 2-  Search strategy. 

 

Search Strategy   

Discretization x 2 

 y 2 
 z 2 

Elipsoid search Hematite Itabirite 

Octante maximum 8 maximum 8 

Radius 220 600 

Azimuth 112,5° 90° 

Spatial continuity Hematite Itabirite 

Nugget effect 0,07 0,06 

Partial sill 0,14 0,18 

Model Exponential Exponential 

Maximum range 220 600 

Azimuteh 112,5° 90° 

Another important fact that should be pointed out, to avoid extrapolation beyond 

the domain area of the samples, a solid was generated respecting these domains, the same 

was used to cut the models generated by the implicit and geostatistical method (Image 8). 
 

Image 8 – Extrapolation restriction model. 
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3.4 Implicit Modelling 

In applying this method, it was necessary to establish the search parameters used 

by the algorithm (Table 3). 

 
Table 3 - Search parameters used by the algorithm 

 

Search Parameters Values Used 

Minimum size of skipped ranges 1 

Maximum points per partition 500 

Maximum space 30 

Distance buffer 0 

Triangular mesh grid units 50 

Minimum size of ignored intervals: defines the minimum sample length interval 

that should be included in the lithology model, and which should be ignored. 

Maximum points per partition: the data set is divided into overlapping regions 

(partitions), which are modeled separately for the sake of algorithm efficiency. This 

parameter defines the maximum amount of points to contain in a partition. 

Maximum spacing: determines the maximum spacing (in grid units) that will be 

used to position the points relative to each range. It defines the spacing of each grid cell 

that will be used to position the points relative to each gap. 

Distance buffering: this option allows you to “fill in” the input data boundaries 

in all directions according to a defined distance. 

Mesh size: it determines the mesh size (in grid units) that will determine the size 

of the individual wireframe triangles. 

You can also define a custom set of x, y, z coordinates to control extrapolation. 

However, in the generation of this model, the same model presented in Image 8 

was used. 

 

 

4 Results and discussion 

The manual model resulted from the spatial union of the horizontal sections. The 

application of the geostatistical method using the indicator kriging technique resulted in 

blocks filled with probability values, i.e., the probability of the estimated block belonging 

to the modeled lithology, blocks with values below 0.5 (50%) were disregarded. And from 

this set of selected blocks, the solids representing the geological models of hematite and 

itabirite were generated. Finally, the implicit model was generated after adjusting the 

settings of the algorithm search parameters. The envelops corresponding to the 

mineralized bodies can be seen in Images 9, 10 and 11. 
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Image 9-  Model Manual. 

 

 
Image 10 – Model Geoestatistical. 
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Green– itabirite 

Red - hematite 



Iberoamerican Journal of Applied Computing                                              ISSN 2237-4523 

V.10, N.1, July/2020                                                                                                                                Page 37 

 

 
 

Figura 11 -  Model Implict. 

 

4.1 Comparison of Results - Hematite body 

Regarding the models generated for hematite lithology, through the implicit and 

geostatistical modelling methods, they presented some similarity in the distribution of the 

mineralization than when compared to the manual modelling method. Being visible the 

difference in the shape and continuity of the bodies (Image 12). 
 

Image12 - Overloping models of hematiite mineralization.. 

 

Partly these differences were due to the fact that, where there were few samples 

representing hematite mineralization, with a larger predominance of samples representing 

Green – itabirite 

Red - hematite 

Model Manual 

Model geoestatistical 

Model implict 
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itabirite lithology, they eventually dominated the result. Thus, hematite samples were 

considered as itabirite in the implicit and geostatistical modelling process. In the manual 

modelling process, the interpretations of the vertical sections of this model generated 

envelops based on the main hematite body mineralization, thus involving the small 

mineralization of the itabirite lithology, resulting in a more continuous solid and larger 

volumetric increment in relation to the implicit and geostatistical methods. This volume 

increase is best described in Table 4. 

 
Table 4 - Solids volumes corresponding to hematite and itabirite lithologies. 

 

 Hematite Itabirite  

Models Volume 
(m³) 

Volume (m³) Volume Total 
(m³) 

Manual 138.547.206 436.031.462 574.578.668 

Geoestatistical 40.757.820 644.183.377 684.941.197 

Implict 71.582.274 567.504.108 639.086.382 

4.2 Comparison of Results - Itabirite body 

Regarding the manual model generated for itabirite lithology. In the 

interpretation of the sections, we tried to extrapolate as little as possible beyond the 

domain area of the samples, which resulted in a model with smaller geometry when 

compared with implicit and geostatistical modelling methods. These methods showed 

greater volume increase because hematite samples were considered as itabirite, in places 

where itabirite samples prevailed (Image 13).These differences interfered with the results 

of the volume values of each model, as can be seen in Table 5 above. 
 

Image13- Overlapping models of itabirite litology. 
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5 Conclusion 

The results obtained with the use of the three methods in this research showed 

similarities in the determination of the models between the lithological contacts, but there 

were significant differences in quantitative terms. 

The geostatistical and implicit modelling methods presented similar results, 

mainly in the hematite body modelling .Such methodologies proved to be applicable as 

auxiliary tools to manual modelling in the process of section interpretation. Thus allowing 

a continuous improvement of the model making it more refined and reliable. 

The implicit modelling method generates models automatically and quickly that 

can help in interpreting or pointing regions where more samples are needed, much more 

flexible when compared to manual and geostatistical modelling methods. 

Thus, it was concluded that there might be interactivity between the professional 

who performs the interpretation of the sample data and the methodologies used in this 

article. 
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