
Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.10, N.1, July/2020 Page 42

On speeding up k-means clustering using graphics processing

units

William Xavier Maukoski, Lilian Tais de Gouveia, Luciano Jose Senger1

1Universidade Estadual de Ponta Grossa (UEPG) – Ponta Grossa – PR – Brasil

william_maukoski@hotmail.com.br, ltgouveia@uepg.br, ljsenger@uepg.br

Abstract. Due to advancements in technology, modern farms work differently than those

from past. Over the years, there was an increase in the number of data collected by

sensors, cameras and other systems. In this scenario, the implementation of data mining

on parallel computing systems is crucial for ensuring system scalability and better

performance as data continues to grow. This paper presents a case study on a parallel

implementation of the K-means clustering. Clustering has been used in many

applications including image processing, information retrieval and climatology.

However, k-means clustering is knowing to be computationally expensive when applied

to obtain clusters from large datasets. The parallel k-means implementation is target to

general purpose graphics processing units. In order to implement the k-means clustering

to this parallel architecture and to provide a better software platform to data science

research, the Weka k-means implementation were chosen and adapted. First, a profiler

was used to identify the most time-consuming portions of code. By using a profiler, it was

possible to verify a 95.57% reduction in the number of lines of code that would need to

be analyzed to rewrite the code. After, a parallel k-means clustering was implemented

and evaluated. The results show that using the parallel k-means clustering and graphics

processing units, data mining results can be achieved in reduced times. The speedup

achieved was up to 26 when using all available execution cores.

Keywords: Parallel Computing, K-means, General purpose graphics processing units.

1. Introduction

Modern farms work differently than those from past, primarily because of advancements in

technology, including sensors, devices, machines and farming management systems. Today’s

agriculture uses technologies such as temperature and moisture sensors, images from unmanned

aerial vehicles and geographic information systems [1]. These devices and technologies allow

farms to be more efficient, safer and more environmentally friendly.

Over the years, there was an increase in the number of sensors in the field, resulting in an

increase in the number of data collected [1]. To be able to work with this data flow, it is necessary

to apply techniques known as Data Mining (DM). These techniques allow to extract patterns and

relationships using machine learning algorithms. From the knowledge obtained with the DM, it is

possible to predict behaviors and assist in decision making [1,2].

Due to large data volume available used as input, the implementation of data mining

techniques on parallel computing systems is crucial for ensuring system scalability as data

continues to grow. In this scenario, parallel computing has been a viable means to reduce data

mining computing times. Among parallel architectures, General Purpose Graphics Processing

Units (GPGPU) is an option to speed up data mining computing [2].

The number of cores in GPU hardware is massively greater than the number of processing

cores in general purpose CPUs. GPUs are dedicated hardware for manipulating computer graphics.

Due to the computing demand for 3D graphics modeling and rendering, GPUs have evolved into

mailto:william_maukoski@hotmail.com.br,%20ltgouveia@uepg.br

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.10, N.1, July/2020 Page 43

an organization of highly parallel many-core processors [3]. The advances in GPU architectures

have driven the development of general-purpose computing on GPUs (GPGPU).

Although it is mistakenly considered a recent technology, GPU programming is used from

the early 1990's. There are challenges in algorithm design when using GPU manycore

environments as target hardware. First, it is necessary a deep knowledge of the algorithm (parallel

or sequential) that will be written into a new version, target to GPU hardware manycore. Also, it

is necessary that the algorithm that will be executed in manycore hardware must present a high

level of parallelism, because despite the massive number of cores, GPU clock rates are usually

below CPU clock rates [4].

This paper presents a case study on an implementation of the k-means algorithm in a GPU

computing environment. K-means clustering is a very popular unsupervised machine learning

method. It has been used in many applications including image processing, information retrieval

and climatology [5]. However, k-means clustering is knowing to be computationally expensive

when applied to obtain clusters from large datasets.

In order to implement the k-means clustering target to GPU systems and to provide a better

software platform to data science research, the Weka k-means implementation in the Java language

were used [6]. Weka is a free software licensed under the GNU General Public license and the

parallel version was built using the original Weka k-means source code. By this way, the parallel

k-means code can be easily experimented by accessing the Weka GUI.

2. Related Work

The first k-means algorithm [7] was proposed in 1967 and since it is used in data science and

machine learning. In the k-means algorithm, we are given a finite set S of points in ℜm, and an

integer k ≥ 1, and we want to find k points (centroids) so as to minimize the sum of the square of

the distance of each point in S to its nearest center. This problem is well as NP-hard [8] and thus

k-means is highly time-consuming when data and cluster sizes are elevated.

Recently, as a general-purpose and high-performance parallel hardware, GPUs develop

continuously and provide another computing system for improving k-Means performance. GPUs

are dedicated hardware for manipulating into highly parallel many-core processors. In [9], the

first parallel k-means was presented. Since that, many attempts have been made to develop

clustering algorithms to take advantage of the high-performance parallel computing systems [10].

Jaros et al. [11] presented a parallel k-means algorithm for image segmentation. The

authors implemented an k-means target to Many Integrated Core (MIC) architecture composed of

Intel Xeon Phi coprocessors. The authors evaluated the performance of MIC, GPU, CPU and

sequential implementations. The authors related speedups values nearly to 12 and 33 in MIC and

GPU, respectively, using different image and clusters sizes for clustering heart and liver images

from human bodies.

Lutz et al. [5] presented a GPU-optimized algorithm for k-means. The authors’ algorithm

is based on a distinct strategy for updating centroids on GPUs. The reported k-means approach

scales to very large data sets.

Li et al. [12] proposed a framework for parallel k-means computation and deployed the k-

means algorithm on a many-core processor. The parallel efficiency achieved was almost equal to

ideal using three randomly generated datasets.

Li et al. [13] designed a parallel k-means algorithm for GPUs by using the Compute Unified

Device Architecture (CUDA) programming model [14]. The authors concluded that the

dimensionality (number of attributes) of the data set is an important factor to be considered. The

authors employed distinct algorithms for low and high dimensional data sets.

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.10, N.1, July/2020 Page 44

3. Material and Methods

The computing system used in the experiments is an Intel i5 7400 processor (4 cores and 4 threads

clocked at 3.5 Ghz and at 4.0 Ghz when turbo boost is activated) with 8GB of 2.4 Ghz memory

and equipped with a Nvidia GTX 1060 GPU (6GB of memory and 1280 cores). The CUDA

software version used is 10.0.130.

The k-means algorithm takes an input parameter k. It organizes a set of n data instances

into k clusters according to a similarity measure. Each instance of data is considered a vector in

Euclidean space and thus can have multiple attributes. The mean values of each cluster, also called

centroids, are a summary measure of the similarity of the data instances associated to this cluster.

At the beginning, the k-means algorithm randomly selects k of the data instances as the initial

centroid for each cluster. In each iteration, k-means associates each data object with its nearest

centroid, according to a similarity metric. The Euclidean Distance is a common choice to measure

the similarity between data instances. Next, the k-means algorithm computes new centroids by

taking the mean of all the data objects in each cluster respectively. The process repeats until the

changes in the centroids values are less than some predefined threshold. In the experiments, the

cluster size was fixed to k=10.

The Weka k-means implementation in the Java language were used and extended to parallel

version in the experiments. By this way, the parallel implementation can be easily experimented

by accessing the Weka GUI. Software profilers were used aiming to identify function call

sequences and portions of code that are time consuming in Weka k-means implementation. After,

CUDA libraries were used to implement the parallel k-means computer program in the Java

Language.

The speedup values of the parallel k-means program were computed as defined by

Equation 1:

𝑆(𝑝) =
𝑇 𝑠𝑒𝑞

𝑇 𝑝𝑎𝑟
 (1)

where S(p) is the speedup using p cores, Tseq is the execution time of the sequential version

and Tpar is the execution time of the k-means parallel version. Furthermore, the execution times

were studied using the Amdhal’s law [15]. The Amdhal´s law gives the theoretical speedup in

latency of the execution of a parallel program at a fixed data set that can be expected of a parallel

execution system whose resources (processing cores) are improved.

In the experiments, the k-means clustering sequential and parallel implementations use as

input a database which describes the soybean productivity in agricultural areas of the USA [16].

This database is composed of 80 different attributes, 6 classes and 12800 instances. Data

augmentation techniques were used to increase the data set size and to better exploit the parallelism.

4. Results

Initially, the JProbe profiler was used to identify how much time is spent in each method of the

Weka k-means algorithm. The results using a small portion of the data set can be seen in Table 1.

As one can see, the major time-consuming portion in the Weka k-means implementation is the

moveCentroids method. Due profiling, there was a reduction in the number of lines of code that

must be analyzed. The k-means class has 2472 lines, while the moveCentroids method has 102

lines. By this way, it was observed a 95.57% reduction in the number of lines to be manually

analyzed by the programmer.

Table 1 – Execution times in weka k-means main methods

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.10, N.1, July/2020 Page 45

Weka method Execution times Percentage (%)

Weka.clusterers.SimpleKMeans.moveCentroid 00:11:30 50

Weka.core.instance.weight 00:02:51 12

Weka.core.instance.numAttributes 00:01:47 7

Weka.core.instance.attributes 00:01:40 7

Weka.core.instance.isMissing 00:01:29 6

Weka.core.instance.value 00:01:28 6

Weka.core.Attribute.isNumeric 00:00:49 4

Weka.core.DistanceFunction.distance 00:00:38 2

After identifying the most time-consuming method, a top-down analysis of this method

was performed. The method implements two data structures and a repeat loop. The data structure

used by the moveCentroids method is depicted in Figure 1. This data structure is a linked list of

instances. One field of this data structure stores a linked list of attributes. In order to implement

the parallel version of the code using the JIT java technology, five additional data structures were

defined: a) a vector of Boolean values with size of N x M, where N is the number of instances and

M is the number of attributes. This vector registers the presence of numeric values (not nominal

attributes); b) a vector of Boolean values, which is set to True when the value is numeric; c) a

vector with NxM size, used to store the attribute values; d) a value with the weight of each attribute;

e) an auxiliary data structure used to store values updated by parallel threads and used in k-means

clustering.

Figure 1 – The moveCentroids data structure.

The original Weka k-means implementation and the new parallel implementation were

executed using the same data set and the results were compared. The Weka clustering report

indicated that the two versions of k-means produced the same results (same number of clusters

and same data distribution among clusters). The Table 2 show the computing times and the

statistics using 1, 80, 160, 540 e 1080 threads. Each experiment was conducted 10 times for each

number of threads.

The study group with 1080 GPU cores achieved the best execution times and the lowest

associate standard deviation value. This number of cores achieved shortest response times, which

implies lower variance. Also, due to number of cores used, this group is less susceptible from other

system or application processes influence when clustering data.

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.10, N.1, July/2020 Page 46

The Figure 2 shows a plot of the mean execution times divided by the mean number of

computing threads. A reduction in response times was observed as the number of threads increased,

thus characterizing a horizontal asymptote with a limit imposed by the execution time of the

sequential portion of the code, as defined by Amdhal's Law. The linear regression model, when

using the number of threads by the execution times, explains nearly 71% of the experiment data

(R² = 0,7135).

Table 2 – Parallel k-means program execution times.

Experiment/
#of threads

1 80 160 540 1080

1 03:46:15 00:23:42 00:16:14 00:12:05 00:08:46

2 03:47:22 00:23:56 00:16:10 00:12:01 00:08:38

3 03:47:18 00:24:05 00:16:05 00:11:43 00:08:41

4 03:47:23 00:24:08 00:16:17 00:11:48 00:08:50

5 03:46:25 00:23:45 00:16:37 00:11:43 00:08:41

6 03:46:40 00:23:22 00:16:06 00:11:59 00:08:46

7 03:46:25 00:23:31 00:16:37 00:12:09 00:08:43

8 03:46:06 00:23:41 00:16:29 00:11:42 00:08:38

9 03:45:54 00:23:49 00:16:12 00:12:10 00:08:44

10 03:47:26 00:23:55 00:16:05 00:11:46 00:08:41

Mean values 03:46:32 00:23:47 00:16:13 00:11:54 00:08:43

Standard
deviation

0,59 0,24 0,20 0,18 0,06

Speedup 9,52 13,96 19,03 26,00

A logarithmic scale plot of the speedup values by number of threads are depicted in

Figure 3. The speedup curve shows an asymptotic behavior. The regression model achieved a R²

value nearly to 0,80. The speedup behavior allow to observe that better speedup values can be

achieved when using more GPU cores.

5. Conclusion
This paper presents an implementation and a performance evaluation of a parallel k-means

designed to GPU hardware. K-means is a common choice when data scientists aims to obtain new

insights by exploiting machine learning data sets and, since GPUs have become faster, it is

important to enable machine learning tools to exploit GPU parallel execution cores. Our

implementation works with the widely adopted Weka data mining tools.

By using the profiler, it was possible to verify a 95.57% reduction in the number of lines

of code that would need to be analyzed to rewrite the code for GPU hardware. Using the GPU

hardware, data mining results can be achieved in short times. The use of the GPU hardware

resulted in a speedup equal to 26 when using all available GPU cores.

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.10, N.1, July/2020 Page 47

Figure 2 – Mean execution times when using distinct number of threads and the linear

regression model.

Figure 3 – Speedup values

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.10, N.1, July/2020 Page 48

6. References

[1] KAMILARIS, A.; PRENAFETA-BOLDU, F.X. Deep learning in agriculture: A survey.

Computers and Electronics in Agriculture, v. 147, p. 70-90, 2018.

[2] RAMESH, V.; RAMAR, K; BABU, S. Parallel K-Means Algorithm on Agricultural Databases.

IJCSI International Journal of Computer Science Issues, v.10, n. 1, 2013.

[3] LI, Y.; ZHAO, K.; CHU, X.; LIU, J. Speeding up k-Means algorithm by GPUs. Journal of

Computer and System Sciences, v. 79, n. 2, 2013.

[4] GURCAN, I.; TEMIZEL, A. Heterogeneous CPU–GPU tracking–learning–detection (H-TLD)

for real-time object tracking. Journal of Real-Time Image Processing, n.16, p. 339–53, 2019.

[5] LUTZ, C.; BREß, S.; RABL, T.; ZEUCH, S.; MARKL, V. Efficient and Scalable k‑Means on

GPUs. Datenbank Spektrum, n. 18, p. 157–169, 2018.

[6] FRANK, E; HALL, M. A.; WITTEN, I. H. The WEKA Workbench. Online Appendix for

"Data Mining: Practical Machine Learning Tools and Techniques". Morgan Kaufmann, 4.ed.,

2016.

[7] MACQUEEN, J. Some methods for classification and analysis of multivariate observations.

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probabilities,

n.1, p. 281-296, 1967.

[8] LEE, E.; SCHMIDT, M.; WRIGHT, J. Improved and simplified inapproximability for k-means,

Information Processing Letters, v. 120, p. 40-43, 2017.

[9] LI, X.; Fang, Z. Parallel clustering algorithms, Parallel Computing, v.11, n. 3, p. 275-290, 1989.

[10] SARDAR, T. H.; ANSARI, Z. An analysis of MapReduce efficiency in document clustering

using parallel K-means algorithm. Future Computing and Informatics Journal, v. 3, n. 2, 2018.

[11] JAROS, M.; STRAKOS, P.; KARASEK, T.; RIHA, L.; VASATOVA, A.; JARASOVA, M.;

KOZUBER, T. Implementation of K-means segmentation algorithm on Intel Xeon Phi and

GPU: Application in medical imaging. Advances in Engineering Software, v. 103, p. 21-28,

2017.

[12] LI, M.; YANG, C.; SUN, Q.; MAO, W.; CAO, W.; AO, Y. Enabling highly efficient k-means

computations on the SW26010 many-core processor of Sunway Taihu Light. Journal of

Computer Science and Technology, v. 34, n. 1, p. 77-93, 2019.

[13] LI, Y.; ZHAO, K.; CHU, X.; LIU, J. Speeding up k-Means algorithm by GPUs. Journal of

Computer and System Sciences, v. 79, n. 2, p. 216-29, 2013.

[14] NICKOLLS, J.; BUCK, I.; GARLAND, M.; SKADRON, K. Scalable Parallel Programming

with CUDA. Queue, n. 6, p. 2, p. 40–53, 2008.

[15] AMDDHAL, G. M. Validity of the single processor approach to achieving large scale

computing capabilities. Spring Joint Computer Conference, p. 483-485, 1967.

[16] MICHALSKI, R. S.; CHILAUSKY, R. L. Learning by Being Told and Learning from

Examples: An Experimental Comparison of the Two Methods of Knowledge Acquisition in

the Context of Developing an Expert System for Soybean Disease Diagnosis. International

Journal of Policy Analysis and Information Systems, Vol. 4, No. 2, 1980.

