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Abstract. The identification of plant species is essential in botany and has attracted the 

interest of researchers in the field of computer science. Such identification requires the 

assistance of botany experts and, due to the substantial number of species and the 

similarity among them, it can be time-consuming and subjective. To automate the process 

of plant identification, computer systems that capture and process plant images have 

been considered. These systems use machine learning and therefore require image 

samples for training and model construction. Among the techniques that can be used for 

machine learning, convolutional neural networks have shown promise due to their ability 

to use images without prior preprocessing and background information. This work 

investigates the use of machine learning through convolutional neural networks to 

identifying plant species. For this, a new dataset of images from 35 plant species were 

created, collecting images from an arboreal collection, and, using data augmentation, 

this dataset was expanded. This dataset was used to evaluate the accuracies of four 

convolutional neural network models. The better accuracy value was equal to 89%, when 

using the MobileNetV2 model. 
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1. Introduction 

Plants releases oxygen into the atmosphere, captures carbon dioxide, prevents erosion, and 

contributes to the regulation of relative humidity in the air. Furthermore, living organisms obtain 

a source of oxygen and nutrients through plants (Antonelli, Smith, & Simmonds, 2019).  

Knowledge of plants is essential for improving ecosystems, agriculture, and sustainability (Lee, 

Lim, Song, & Alqahtani, 2023). Due to this fact, researchers have shown interest in new techniques 

to identify plant species. 

To identify plant species, there is a meticulous process involving experts. A plant is 

commonly identified through visual analysis of its parts, such as stems, fruits, and, primarily, its 

leaves (Cope, Corney, Clark, Remagnino, & Wilkin, 2012; Zhuang, et al., 2019). The identification 

of plants species is considered a major challenge due to the following factors: inter-species 

similarity, high intra-species variability, imbalanced data, and the number of species (Britto, 

Pacífico, & Ludermir, 2019; Moresco, De S. Britto, Costa, Senger, & Hochuli, 2022).  

Computer vision and machine learning have been considered as a solution for plant 

identification. Computer vision systems use images of plant parts to automatically identify species, 

allowing non-experts to obtain species identification through image capture. The literature 

demonstrates that there are two main approaches to plant species identification: a) image 

processing and non-automatic feature extraction through techniques like histogram surveys, filters, 

and texture analysis; and b) automatic feature extraction through deep learning. Approaches using 

automatic feature extraction and convolutional neural networks have demonstrated better 
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classification accuracy compared to non-automatic feature extraction approaches (Zhuang, et al., 

2019). 

One issue in machine learning tasks is the lack of plants datasets, which are insufficient in 

diversity and size (García-Ordás, Benítez-Andrades, García-Rodríguez, Benavides, & Alaiz-

Moretón, 2020).  Thus, regardless of the computational approach to be employed, it is necessary 

to collect images and label them through consultation with experts in the field of botany. This 

paper investigates the use of plant leaf images for species classification through convolutional 

neural networks and transfer learning. The contribution of this paper is: a) a new plant species 

image dataset; b) an evaluation of machine learning, using convolutional neural networks and 

transfer learning, on the problem of plant species identification. 

 

2. Background 

 Due to problems in distinguishing noise or to filter background information from images, 

deep learning and convolutional neural networks (CNNs) have been used in plants species 

classification (Moresco et al., 2022).  A CNN is a hierarchical and multi-layer feature extractor: 

each convolutional layer performs a convolution operation on the image input and passes the 

extracted features to the next layer (Figure 1). Batch normalization is performed on the output of 

the convolutional layers, whereby the extracted features are normalized by adjusting and scaling 

the artificial neuron activations. Pooling layers take each output from the convolutional layer's 

feature map and prepares a condensed feature map. Before passing this information to fully 

connected layers for the final task, such as classification, it is necessary to convert this three-

dimensional representation into a one-dimensional vector. The Flatten layer precisely 

accomplishes this task by reshaping the data, enabling it to be fed into fully connected layers. 

Lastly, a fully connected layer (dense layer) and the SoftMax layer computes the score of each 

class and infers the category of the input image. The number and configuration of the layers defines 

a convolutional network architecture. A CNN model is a specific instance of a CNN architecture 

with weights trained for a particular task. 

 
Figure 1 – A convolutional neural Network with two convolution and two max-polling layers. These layers are 

trained to create a feature representation (Flatten layer).  The two dense layers and the SoftMax layer are trained 
to build a classifier. 

 

One major issue when using Convolutional neural networks to build classification models is 

the requirement of many samples in the training dataset. The accuracy and generalization 

capabilities of CNNs is directly related to number of see samples. When many samples are not 

available, pre-trained networks can be used, using the concept of transfer learning. Transfer 

learning allows the knowledge available from a large dataset be transferred to other classification 
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task. Instead of training a CNN from scratch for a new task, transfer learning starts with a pre-

trained model on a large dataset, often on a diverse task like image recognition. CNN models using 

the ImageNet dataset are frequently used transfer learning. The knowledge captured by the model 

in its convolutional layers using the ImageNet dataset, which learn hierarchical features, can be 

transferred to a new task with a smaller dataset. By using pre-trained features, the model can 

generalize better and require less training data.  

Convolutional neural networks have been evaluated for plant species identification, using leaf 

images as input to train and evaluate classification models. Lee et al. (2023) conducted a study 

using convolutional neural networks and the MalayaKew Leaf dataset . CNNs were used to extract 

features from images. The extracted features, acquired from the flatten convolutional network 

layer, were classified using multilayer perceptron (MLP) and support vector machines (SVM). The 

classifier achieved an accuracy of 99.5%.  

Liu et al. (2018) used a modified version of the LeNet model. The model was used in both 

feature extraction and classification. Data augmentation techniques were used to expand the size 

of the image’s dataset. In the study, horizontal flip, vertical flip, noise, color jittering, and rotation 

were applied in the original dataset to generate new images. In this study, an accuracy of 87% was 

achieved. 

A convolutional neural network system has been proposed in (Le Huy Hien & Van Hieu, 2020). 

The PlantCLEF2003 dataset, which consists of 51,273 images from 609 plant species, were used 

to train classification models. The paper evaluates the Resnet50V2, Inception, Resnet V2, 

MobilenetV2 and VGG16 models when used to extract features from images.  Support Vector 

Machine and k-nearest neighbor (KNN) classifiers were also evaluated, and the highest accuracy 

of 95.6% were observed when using the MobilenetV2 model. 

In (Sundara Sobitha Raj & Vajravelu, 2019), the MobileNet and DenseNet models were 

combined to extract the features from plant leaf images. The extracted features were used to train 

traditional machine learning classifiers, such as Naïve Bayes and multi-layer perceptron. Four 

image datasets were considered in the experiments: Folio (Munisami, Ramsurn, Kishnah, & 

Pudaruth, 2015), Swedish leaf (Söderkvist, 2001), Flavia (Wu  et al., 2007), and a dataset built by 

the authors. The authors reported accuracy values among 96% to 99% and the best results were 

reported when using a combination of CNN and traditional machine learning classifiers. 

Moresco et al. (2022) evaluate different architectures of CNNs in classifying plant species 

from leaf images and investigate the fusion of their intermediate layers. The authors combined up 

to 5 convolutional blocks for each model experimented and studied the impact on the CNN 

accuracy and its capacity to recognize classes unseen during training. A Siamese Neural Network 

model, which contains two sibling convolutional architectures that share their weights, were 

combined with the VGG16, MobileNet and DenseNet models and evaluated the Flavia and 

MalayaKew datasets.  The best results show an accuracy of 100% for the Flavia dataset and 94.31% 

for the MalayaKew dataset. 
 

3. Methods 

Leaf images from plants were obtained from the Arboreal Collection at Augusto Ribas 

Agricultural College (CAAR/UEPG). This plant collection is situated in Augusto Ribas College, 

located at the Ponta Grossa State University, Ponta Grossa, Paraná, Brasil.  The images were taken 

using a smartphone camera with a resolution of 1659 x 2658 pixels and 24 bits of color depth.  For 

each plant, images samples were collected using a white paper sheet background, varying the leaf 

orientation.   The Figure 2 shows three samples of plants images included in the dataset. The 

number of plant species used to build the dataset is equal to 35. Data augmentation, using rotation 

and zoom, were used to increase the data size from 730 to 1986 images in the CAAR dataset 

(Figure 3).  
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Convolutional neural networks and transfer learning were experimented with using the 

MobileNet, MobileNetV2, VGG16, and VGG19 as base models. A percentage of 70% of the 

images were used for training, and the remaining for validation. The number of training epochs 

was set to 50 for all models, except for the MobileNetV2 model, which used 100 training epochs. 

In general, it was experimented number of epochs at which the accuracy and loss function on both 

the training and validation sets became stable.  The Figure 4 shows a plot of the convolutional 

network layers with a VGG16 based transfer learning model. As seen in Figure 4, additional dense 

layers have been added to the base model. Only these layers have their weights updated on training, 

while the layers of the base network have their weights frozen (not updated on training). The pre-

trained CNN models were experimented using the Keras API and the Python language (Joseph, 

Nonsiri, & Monsakul, 2021). 

 

    

(a) Parapiptadenia 

rigida 

(b) Jacaranda 

mimosifolia 

(c) Tabebuia 

roseoalba 

(d) Libidibia ferrea 

Figure 2– Four samples of plant images included in the CAAR dataset:  Parapiptadenia rigida (a), Jacaranda 
mimosifolia (b), Tabebuia roseoalba (c) and Libidibia ferrea (d) 

 

 

 
 
 
 
 
 
 
 

Figure 3 – Images 
of the Jacaranda mimosifolia leafs. In (a), the original image. The images from (b) to (d) were created using data 

augmentation. 

    

(a) (b) (c) (d) 
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Figure 4 – Number and configuration of the model layers. The plot shows the VGG16 as transfer learning model 

(three first layers). The additional layers configuration was also fixed when using the other base models 

experimented (VGG19, MobileNet and MobileNetV2). 

The accuracy, loss function, recall, precision, and f1-score measures were used to evaluate the 

results. During the training, the accuracy and the loss function values were observed. The overall 

correctness of the model was evaluated using the accuracy values.  The accuracy is the ratio of the 

number of correct plant species predictions and the total number of predictions. A loss function 

(also known as a cost function or objective function) quantifies how well the model is performing 

during training. It represents the discrepancy between the predicted values and the actual ground 

truth labels. The goal during training is to minimize the value of the loss function. 

The Precision metric evaluates how often the model is correct when predicting a target plant 

species. The precision is computed by dividing the number of correct positive predictions (true 

positives) for a plant species by the total number of instances the model predicted as positive, 

considering both true and false positives plant species. High precision (near to 1, in a 0 to 1 scale) 

indicates that the model makes fewer false positive errors. The recall (also known as sensitivity) 

indicates the performance of the model when finding all objects of a target plant species. High 

recall indicates that the model captures most of the positive instances. The F1-score is the harmonic 

mean of precision and recall. It balances precision and recall, providing a single metric that 

considers both false positives and false negatives. 

Also, a confusion matrix was used to describe the classification results. The confusion matrix 

provides a comprehensive summary of the performance of a classification model by illustrating 
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the number of correct and incorrect predictions for each plant species. The rows represent the true 

classes, while the columns represent the predicted species. Each cell in the matrix indicates the 

number of instances where a given class was predicted correctly or incorrectly. This allows for an 

analysis of the model's performance. 

 

4. Results 

The Figures 5, 6, 7 and 8 show the accuracy and loss values for each experimented CNN model 

according to each epoch of the training and validation. The accuracy values direct vary with 

number of epochs. The best results expressed into a 0 to 1 scale, where 1 represents an accuracy 

of 100%, are presented in Table 1. The MobileNetV2 model obtained the better accuracy value 

(93%) than the accuracy values from the other models. For this model, the Table 2 presents the 

classification report when using the validation data and the Figure 9 depicts the confusion matrix. 

The precision observed was equal to 100% for 14 plant species. Among all plant species, the 

worst precision values were observed for the Psidium guajava L. (65%), Prunus myrtifolia (L.) 

Urb. (57%) and Myrcianthes pungens (O.Berg) D.Legrand (67%) plant species. The Prunus 

myrtifolia (L.) also presented one of the worst recall values (33%), followed by the Prunus 

cerasifera Ehrh. and the Croton floribundus Spreng species, with recall values of 42% and 52% 

respectively. The confusion matrix indicates (Figure 9) , when predicting the Prunus myrtifolia 

(L.),  that the model did not distinguish among mainly the Ocotea catharinensis Mez, the Eugenia 

involucrata DC. and the Psidium guajava L. species.  

  

Figure 5. VGG16 model results. 

  

Figure 6. VGG19 model results. 
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Figure 7. MobileNet model results. 

 

  

Figure 8. MobileNetV2 model results. 

 

Table 1. VGG16, VGG19, MOBILENET, and MOBILENETV2 best accuracy values. 

Performance Metrics/ Model MobileNet MobileNetV2 Vgg16 Vgg19 

Accuracy 0.88 0.89 0.84 0.84 

 

5. Conclusion 
 

This paper presented the CAAR plant image dataset and an evaluation of its usage to train 

convolutional neural models aiming to identify plant species. The dataset comprises 35 plant 

species and a number of 1986 images. The results indicated that the MobileNetV2 model was 

better than the other models, achieving an accuracy of 89%.  

Improvements can be done in the CAAR dataset, like expand its size and variety, aiming 

to achieve better accuracy values in computational classification tasks. In future work, extensions 

in the classification models can be evaluated. For instance, the inclusion of new layers in the 
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network topology and the use of fine tuning can be studied. Furthermore, other network models 

and other traditional machine learning algorithms can also be evaluated, in addition to those 

presented in this paper. 

 

Table 2. MobileNetV2 model precision, recall, f1-score values. 
Plant Species precision recall f1-score support 

Parapiptadenia rigida (Benth.) Brenan 0,88 1,00 0,93 14 

Psidium longipetiolatum D.Legrand 0,91 0,83 0,87 24 

Gymnanthes klotzschiana Müll.Arg. 0,88 1,00 0,93 14 

Campomanesia xanthocarpa (Mart.) O.Berg 0,69 0,92 0,79 12 

Cinnamomum verum J.Presl 0,73 0,92 0,81 12 

Ocotea catharinensis Mez 1,00 0,71 0,83 14 

Ocotea odorífera (Vell.) Rohwer 0,67 1,00 0,80 14 

Croton floribundus Spreng. 0,79 0,52 0,63 21 

Roupala montana var. brasiliensis (Klotzsch) K.S.Edwards 1,00 0,93 0,96 28 

Cassia leptophylla Vogel 1,00 1,00 1,00 12 

Cedrela fissilis Vell. 0,77 1,00 0,87 10 

Eugenia involucrata DC. 0,71 1,00 0,83 10 

Prunus serrulata Lindl. 0,85 0,92 0,88 12 

Cupania vernalis Cambess. 1,00 1,00 1,00 10 

Eugenia pyriformis Cambess. 1,00 0,79 0,88 14 

Psidium guajava L. 0,65 0,93 0,76 14 

Inga vulpina Mart. ex Benth. 0,68 0,81 0,74 21 

Inga sessilis (Vell.) Mart. 1,00 0,64 0,78 14 

Tabebuia roseoalba (Ridl.) Sandwith 0,93 0,88 0,90 16 

Jacaranda mimosifolia D. Don 1,00 1,00 1,00 8 

Laurus nobilis L. 0,83 0,71 0,77 14 

Luehea divaricata Mart. & Zucc. 0,59 1,00 0,74 10 

Senna macranthera (DC. ex Collad.) H.S.Irwin & Barneby 1,00 1,00 1,00 14 

Curitiba prismatica (D.Legrand) Salywon & Landrum 0,76 0,93 0,84 14 

Myrcianthes pungens (O.Berg) D.Legrand 0,67 0,60 0,63 10 

Bauhinia variegata L. 1,00 0,75 0,86 12 

Libidibia ferrea (Mart. ex Tul.) L.P.Queiroz 0,92 1,00 0,96 12 

Paulownia fortunei var. mikado 1,00 0,93 0,96 14 

Prunus myrtifolia (L.) Urb. 0,57 0,33 0,42 12 

Eugenia uniflora L. 0,92 0,75 0,83 16 

Prunus cerasifera Ehrh. 0,71 0,42 0,53 12 

Schinus molle L. 1,00 1,00 1,00 14 

Sequoia sempervirens (D.Don.) Endl. 1,00 0,92 0,96 12 

Poincianella pluviosa (DC.) L.P.Queiroz 1,00 0,86 0,92 14 

Tipuana tipu (Benth.) Kuntze 1,00 1,00 1,00 14 
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Figure 9. Confusion matrix. 
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