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Abstract. The formalism of the bayesian networks has been employed in the de-
velopment of many intelligent systems. This work considers applicatins which
demand the utilization of online learning methods, more specifically methods
for online parameter learning. Online learning methods update the bayesian
network parameters as new data samples/observations are collected. In this
context, it is import to consider the convergence of the learning method in rela-
tion to the empirical distribution of the data. Given that this work proposes a
experimental protocol to quantify the convergence/divergence of models gener-
ated by online learning procedures. An application example it is also presented.
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1. Introduction
Data collection is a complex task in many areas. Besides the technical challenges inherent
in the methods of data acquisition is needed consider factors related to the costs and risks
underlying the task. An additional difficulty occurs when fetching distributed geograph-
ically and over time. That is, in some cases data is obtained over the years in different
locations and by different technicians or researchers who employ a particular procedure
on a sample of the local population.

In this context, this paper considers the following problem: a team wants to de-
velop an intelligent system [Russell and Norvig 1995] must issue forecasts or diagno-
sis about the state of certain variables in the domain of an application The system em-
ploys the formalism of probabilistic Bayesian networks [Pearl 1988] to model the domain
and is assumed that the network should be generated by methods of machine learning
[Mitchell 1997].Once the data collection process must occur over a long period of time
the development team plans to test the use of iterative learning procedures. Iterative learn-
ing methods update the model when new data is entered in the database used to induce
the model.

A Bayesian network is a compact representation of a joint probability distribution.
The structure of a network is defined by a directed acyclic graph whose nodes symbol-
ize and random variables and arcs represent probabilistic influences.Each node stores the
conditional distributions of the variable represented by him. The automatic learning of
Bayesian networks can be abstracted in two steps: learning the network structure and

V.1, N.2, Dez/2011 8Pág. 4

IberoAmerican Journal of Applied Computing ISSN 2237-4523



IberoAmerican Journal of Applied Computing ISSN 2237-4523

training of the numerical parameters (conditional probabilities local). This paper consid-
ers only the second step.

In order to fulfill its task the development team will need criteria to select a method
suitable for learning their goals [Friedman et al. 1997].Must be noted that there are sev-
eral criteria to evaluate the suitability of a Bayesian network generated by machine learn-
ing methods [Provan 1994]. However, this work considers the use of metrics to assist in
the selection of iterative procedures. To this end, proposes to use the measurement of the
Kullback-Leibler divergence to quantify the convergence of the models generated relation
to the data used in the training stage. The basic idea is to use the distance the Kullback-
Leibler to measure the differences between the empirical distribution and the generated
models as that the number of training examples of the base increases.

The paper is organized as follows. Section 2 presents an overview of Bayesian
networks, iterative learning Bayesian networks and Kullback-Leibler measure. Section
3 describes an approach to employing the above concepts in a protocol to compare the
performance of algorithms iterative. Section 4 shows an example of application. Section
5 contains the final considerations.

2. Literature Review
This section reviews some concepts used in defining the proposed experimental protocol.

2.1. Bayesian Networks

Let X = {X1, ...,Xn} be a set of discrete random variables with sample space ΩXi =
{xi,1 . . .xi,ni}. A Bayesian network [Pearl 1988] BN = (G ,F ) is defined by a directed
acyclic graph G whose nodes are elements of X and the edges express dependency re-
lationships probabilistic between variables connected. The uncertainty in relationships
is encoded by a collection of functions F of conditional probabilities Each node Xi
stores a probability table conditionals (TPC) of the form p(Xi|pa(Xi)1) . . . p(Xi|pa(Xi)∗),
where pa(Xi) denotes the parents of Xi in G and pa(Xi)∗ indicates a joint instation
of pa(Xi). Thus, if pa(Xi) have ri instantiations, the TPC of Xi has distributions
p(Xi|pa(Xi)1) . . . p(Xi|pa(Xi)ri).

Let d(Xi) is the set of descendants of Xi in G .The formalism of Bayesian networks
assume the following Markov condition: every variable Xi is conditionally independent
of the variables in X \ d(Xi)∪{Xi} given the state of variables in pa(Xi).The resulting
structure is that a Bayesian network is an implicit representation of a joint probability
distribution of p(X). The distribution p(X) can be calculated from BN using the expres-
sion:

p(X) =
n

∏
i=1

p(Xi|pa(Xi)) .

The Bayesian networks can be employed to solve problems of reasoning based
on evidence. As an example, BN is a network whose graph is a tree where the root is
variable called C, which symbolizes the possible category labels that can be associated
with an object ,and whose leaves X1...,Xn represent the attributes of the object. In this
network 1, the nodes X1...,Xn are children of C, which is indicated by ch(C) = {X1...,Xn},

1The topology presented in the example is of a type naive Bayes classifier [Duda and Hart 1987].

V.1, N.2, Dez/2011 Pág. 49



IberoAmerican Journal of Applied Computing ISSN 2237-4523

see Figure 1. Given a evidence e that reports the value some attributes of a given ob-
ject O, algorithms can be employed to update belief to calculate the posterior distribution
p(C|e) [Zhang and Poole 1996, Pearl 1988, Neapolitan 1990]. Let c1, ...,cnc the sample
space of C, as computed distribution p(C|e) it is possible select the label more suit-
able to mathcalO by choosing the hypothesis with the greater conditional probability
[Friedman et al. 1997].
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Figura 1. A Bayesian classifier.

2.2. Learning Bayesian networks
The topology and parameters of a Bayesian network can be specified directly by the de-
velopment team or may be induced by machine learning algorithms [Heckerman 1995]
[Krause 1998]. Currently, the possibility of storing a large volume of Data has been grow-
ing interest in automated methods.

Learning Bayesian networks can be abstracted in two steps. The first is the induc-
tion of the topology of the graph and the second is the specification of TPCs. This paper
considers only the second task and therefore assumes that the network structure is fixed
in a previous step of the process of knowledge engineering [Parsaye and Chignell 1988]
[Pearl 1988]. The problem of learning or training parameters can be categorized as com-
plete training data or textit training data incomplete. In training with complete data the
tally for each input P

(
xi, j|pa(Xi)l

)
of a TPC consisting primarily in the calculation of the

frequencies observed in the training set. Training with incomplete data requires the use
of methods to estimate the value of the parameters even when the values some attributes
are not known in some records the training base.

2.2.1. Iterative Learning Bayesian networks

An iterative algorithm for learning parameters of a Bayesian network modifies the values
of the same as new data is inserted into the training base. These algorithms assume that
the initial values of the parameters of the model were specified previously subjectively or
obtained from a small sample and therefore should be updated when more information
was available [Bauer et al. ]. Cohen, Bronstain e Cozman [Cohen et al. 2001] present an
algorithm for iterative learning of Bayesian networks which is called Voting EM. The
update rule for the case of training with complete data is described below.

Let D be a database whose n-tuples dt are defined about ×n
i=1ΩXi , com t = 1..m.

The database D is training base from which the model parameters must be calculated. The
elements of D are called cases or examples. It is assumed that each case at D registers
an event which was generated by a random process that agrees with the joint probability
distribution p(X).

Let PT−1(xi, j|pa(Xi)l
)

be also the input current value of the variable (l, j) of TPC
of the variable Xi and PT (xi, j|pa(Xi)l

)
the value of this entry after the update is performed
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by the Voting EM algorithm. Additionally, C1 is a logical variable which represents the
condition (P

(
pa(Xi) j|dt

)
= 1

∧
P
(
xi, j|dt

)
= 1). This condition indicates that the example

dt , being processed, contains positive evidence about of xi, j given pa(Xi)l . The term C2
refers to the condition (P

(
pa(Xi) j|dt

)
= 1

∧
P
(
xi, j|dt

)
= 0), and indicates that dt agrees

with pa(Xi)l but no with xi, j. Given theses conditions the adjustment rule applied by
Voting EM algorithm is:

PT (xi, j|pa(Xi)k
)
=


η+(1−η)PT−1(xi, j|pa(Xi)l

)
: C1;

(1−η)PT−1(xi, j|pa(Xi)l
)

: C2;
PT−1(xi, j|pa(Xi)l

)
otherwise.

(1)

In this rule the parameter η∈ [0,1] establishes a learning rate [Mitchell 1997]. If the value
of η is low, close to 0, the learning process is conservative because each update promotes
only minor adjustments when new cases are entered into D. However as η increases the
influence of more recent cases on the resulting model also increases.

2.3. The distance of Kullback-Leibler

As stated,the objective of this paper is to define an experimental protocol to compare the
behavior of interactive algorithms with respect to their convergence to the empirical dis-
tribution of the data when the size of the training base increases. For this,it is necessary to
employ a measure that quantifies the distance between the probability distribution repre-
sented by the model and the induced probability distribution of cases in the training base.
Once the issue is put this way this paper proposes the use of the measure of divergence
between two distributions proposed by Kullback-Leibler (KL) [Abbell et al. 2006].

Let p and p∗ two probability distributions the measure of the Kullback-Leibler
divergence is given by:

KL(p∗, p) = ∑
u∈ΩU

P∗(u) log
P∗(u)
P(u)

. (2)

Exemplo 1 Given the set of variables X = {X1,X2} whose sample space is defined
by the events u1 ≡ (x1,1 ∧ x2,1) . . . ,u4 ≡ (x1,2 ∧ x2,2) and the distributions p1(X) =
(0,2;0,3;0,1;0,4) and p∗ = (0,3;0,1;0,3;0,3) the Kullback-Leibler distance between
p1 and p∗ é 0,11.

Thus, if pD is the empirical distribution of the data and p(X) is the joint distribu-
tion associated with the Bayesian network BN generated by an algorithm A, who want to
test, measure the distance of p(X) against 2 to pD is:

∆(A) = KL(pD, p(X)) = ∑
dt∈D

PD(dt) log
PD(dt)

P(dt)
, (3)

where dt is an instantiation of the variables in X.It should be noted that since BN en-
codes the distribution p(X) is possible to explore the network structure to calculate P(dt)
efficiently [Pearl 1988].

2The distance Kullback-Leibler measure is not symmetric.
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3. Convergence of iterative algorithms for learning

This section describes an experimental protocol for compare the convergence of different
algorithms for iterative learning Bayesian networks. Let A1,A2, ...AL the algorithms to be
tested the central procedure of the protocol is to calculate the values of ∆(Al) (Equation
3), as follows:

• PROCEDURE 1
1. train Bayesian networks with iterative algorithms A1...AL; this step results

in the Bayesian networks BN 1, BN 2 ... BN L;
2. calculate ∆(A1)...∆(AL) to the bases generated.

The values computed by the above procedure allows to compare the convergence
of the algorithms at a given instant of iterative learning when the training base has m cases.
Performing an empirical analysis of behavior of the algorithms tested for the growth of the
database requires you to obtain indicative of convergence throughout the learning process.
Thus, the training sets are D1...DT such that: (a) Dt ⊂Dt+1; and (b) mt first cases of Dt+1
are those that compose Dt . The procedure presented below specifies the manner in which
the proposed protocol evaluates the development of convergence of the algorithms tested
with increasing the number of cases on the basis of training:

• PROCEDURE 2
1. select the training bases D1...DT and the algorithms A1...AL;
2. for each Dt run PROCEDURE 1 on each Al; for each pair (Dt , Al) this

step results in ∆(Al)t ;
3. obtain statistics that encourage the trend of convergence of measures (such

as regression, moving average charts);
4. attach that information to the selection process of the algorithm.

4. An example of application

This section presents an application example the protocol described in the previous sec-
tion. The application involves the use of a model, still in development, to issue diagnostics
in periodontology. Figure 2 shows the topology of the Bayesian network used in the ex-
periment.

�
��
G �
��

P �
��
O

�
��
GI �
��

IL �
��
E �
��

DP
?

- �

@
@@R

�
��	

Q
Q
Q
QQs

?
@

@@R
�

��	

Figura 2. Bayesian network of the example.

In this network nodes G e P indicate diagnosis of gingivitis and periodonti-
tis, respectively. Nodes E, IL e DP denote the presence of sites of exudate, insertion
loss than 3mm and points with depth survey of more than 5mm.The example assumes
that these three symptoms are influenced by variables G and P. The knot GI con-
ditioned by G symbolizes the gingival index of Löe-Silness [Loe and Silness 1963],in
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more detail the preposition that the gingival index is greater than 1. The auxil-
iary variable O represents the other possible causes for the occurrence of periodontitis
[Ramachandran and Mooney 1998].

The example assumes that the successive training bases D1, D2, D3 e D4 are com-
plete and contains 200, 500, 750 and 1000 cases respectively. The objective of the exper-
iment is to compare the convergence three implementations of the Voting EM algorithm.
The implementation A1 specifies η = 0,01, the implementation A2 takes η = 0,05 and in
the implementation A3 has η = 0,3. The data base training were simulated from subjec-
tive probability model specified and initial values of TPCs were assumed to come from
regular distributions.

The results obtained with the experimental protocol of Section 3 are listed in Table
1.This table shows that ∆(A∗)∗ grows with the increase in the number of cases processed
during training. This is an indication that the selected basis with m ≤ 1000, no implemen-
tations of Voting EM algorithm converged adequately for the empirical distribution. This
is evident in Figure 3 where it is possible be noted that the best results were obtained for
η = 0,01.

Tabela 1. Results of Experiment.

Algorithm A1 A2 A3
∆(Al)1 0,81 1,78 6,96
∆(Al)2 0,99 2,97 16,99
∆(Al)3 1,15 3,39 19,78
∆(Al)4 4,33 4,33 26,2

E∗ is the prediction error of a model and epsilon an arbitrary value. The concept
of sample complexity3 is defined as the number of cases needed to generate, with a prob-
ability less than δ ≤ 1

2 , a model in which E∗ ≤ ε [Russell and Norvig 1995]. Following
[Dasgupta 1997] the complexity the sample for training the model used in the example is
hit by m ≥ 4828; assuming that (a) the algorithms used are non iterative (b) the database
is complete, (c) δ = 0,05, (d) ε = 12 and (e) the error is measured by the log-likelihood
of the model in relation to data.

3This paper considers the learning scheme probably approximately correct models as described in the
context computational learning theory.
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Figura 3. Results obtained for different sizes of base cases. Legend: A1-dashed line; A2-traço
and point; A3 full line.

Thus, when evaluating the results the experiment is important to consider that
the Voting EM algorithm applies a myopic heuristic to perform the updates of the model
(update basically depends on the update of the weight associated with the case being
processed), then is reasonable to assume that it is more likely to converge to points that
are not necessarily the minimum (local or global) regarding the extent of divergence used.
This may partly explain the observed behavior.

5. Final Thoughts
This paper presented an experimental protocol to evaluate the convergence of iterative
algorithms for training parameters of Bayesians networks.The importance of this work
comes from the fact that the Bayesian networks comprise a formalism for uncertain
knowledge representation and reasoning under uncertainty that has been used in many
applications. This has motivated the implementation of algorithms for learning Bayesian
networks integrated environments for many mining of data. However, this is not the case
for iterative algorithms.

The protocol described here specifies the use of Kullback-Leible distance between
the model represented by the Bayesian network and distribution the training data. This
distance is calculated for different sizes of databases. After this processing, the results
obtained by different algorithms can be compared using measures that assess the trend in
a series of tests.

In future works we intend to extend the results presented here for the following
cases
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• imprecise probabilistic models [Levi 1980];
• models whose distributions are not regular at first [Russell and Norvig 1995];
• test the proposed protocol with other iterative algorithms;
• experiments with incomplete training bases.
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