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Abstract: The extraction of water from a groundwater aquifer through a well 

causes the lowering of hydraulic head around the point of extraction. One of the 

tasks in the project of use of this water resource is to estimate the lowering the 

water table and the extent of influence on the aquifer caused by extraction. Based 

on this activity a computer program for applying the Finite Difference Method 

(FDM) was formulated. With this program results using different algorithms for 

comparison and verification of the efficiency of each algorithm were obtained. The 

computer program DIFIN in VBA language - Visual Basic for Applications - is a 

tool for visualization of results and comparison of methods for solving differential 

equations applied. In this program is used the MDF with numerical solution by the 

iterative algorithms Jacobi, Gauss and SOR. Through graphical results is possible 

to compare the methods, verify the numerical solutions, analytical solutions, the 

numerical convergence and conclude about the feasibility of the MDF and 

algorithms in solving differential equations using numerical methods. Using the 

graphical interface is provided an analysis of these results and is possible to 

conclude on the efficiency of the methods, as well as on the ability to aid in the 

understanding the application providing a didactic tool for learning in numerical 

methods applied in engineering. 
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1. INTRODUCTION 

The Finite Difference Method consists on obtaining approximate solution of a partial 

differential equation in discrete points in the domain. The technique uses the 

discretization of the domain and the replacement of the derivatives present in the 

differential equation by approaches involving finite increments. In practice the 

derivatives are replaced by the incremental ratio that the problem was discretized. When 

the domain has more than one variable, the technique is applied to each variable 

separately (CUMINATO et al., 1999). 

The DIFIN computational program is a visualization tool of results and comparison of 

methods for the solution of partial differential equations applied to extraction of water 

from an aquifer through a water-table well. 

This simulation program is the resolution of a hydrogeological model using 3 different 

numerical methods by introducing physical parameters that characterize the aquifer, 

such as conductivity (K) of the medium, the thickness of the aquifer (e), its 
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transmissivity (T) and other parameters used in definition of numerical methods. The 

methods used are Jacobi, Gauss-Seidel and  SOR - Successive Over Relaxation. 

The methods are recursive and differ by data source and by parameterization, achieving 

solutions with a different number of iterations, however, tend to provide identical 

results. 

Jacobi method uses data from the previous iteration to update the calculations. Gauss-

Seidel uses data from the previous and from the current iteration for to recalculate the 

values. SOR method - based on the Gauss-Seidel method introduces a relaxation 

parameter (α) to accelerate the iterative process. 

The problem refers to obtaining a two dimensional contour graph of pressure in the 

aquifer in the region affected by the extraction of water flow-rate Q at a given point. 

With this result it can be noticed the effects of water extraction in lowering level of 

groundwater and its extension. 

The language VBA - Visual Basic Aplicattions - using a GUI - Graphical User Interface 

- provided the right conditions for a friendly and intuitive interface to offer an overview 

of the application. (JELEN et al., 2008) 

The program also allows viewing the solving of the problem in a mesh discretization in 

top view and in profile, beyond the possibilities of comparison between the three 

methods. 

The numerical results can be compared with each other, and also between analytical 

results through the graphical interface available to the user. 

 

2. FINITE DIFFERENCE METHOD - FDM 

 

The numerical finite difference approximations are based on the Taylor series expansion 

of a function h. The expansion allows the estimation of the function h in h(x), knowing 

the value of h for h0. Assuming that h is continuous on the interval [a, b] of interest and 

that it has continuous derivatives up to order n in this interval, Taylor's Theorem allows 

to write, for every point x ∈ [a, b]: 
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where Δ      - xo and Rn is the rest (FORTUNA, 2000). 

Whereas Figure 1, which shows a few points of an one-dimensional mesh. The points 

are eve ly spaced of Δ     i - xi-1. 

 
Figure 1 - One-dimensional mesh of finite differences. 
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Expanding h(xi + Δx) in Taylor series around the point xi, we have: 

h          h  i    
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Isolating the first derivative: 
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where LTE is the Local Truncation Error. Simplifying the notation, writing hi±k for 

h(xi± Δ ) , the equation 05, suppressing the LTE, becomes: 

  

  
 
 
   

       

  
                   

 

Expression 06 is a finite difference equation that represents a first-order approximation 

for the first derivative of h, using forward differences (FORTUNA, 2000). 

 

2.1. FDM applied to a field of groundwater extraction 

Equation 07 - Darcy's Law - describes the phenomenon related to fluid flow in a porous 

medium: 

      
  

  
                   

where K is the hydraulic conductivity, A is the area of the transverse section, h is the 

hydraulic head and x is the flow direction.  

 
  

  
    

  

 
                  

   

   
              

which is the one-dimensional Laplace equation for a homogeneous medium and steady-

state flow. (MARGOLIN et al., 1998). 

Discretizing the problem domain under study and considering equation 08 is obtained, 

by finite differences, the expression: 

 
   

   
   

             

   
        

 

    
         

 
               

For a two-dimensional problem, Laplace's equation assumes the following: 
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Discretizing: 

                   

   
 

                   

   
        

if Δ    Δy: 

     
                           

 
                   

The expression 11 is known as Equation five-point-star. Its geometric configuration 

related to neighboring nodes in the finite difference mesh is shown in Figure 2. 

For the specific problem of extraction of water through a water well, Laplace's equation 

is parameterized with the values of flow-rate extraction (Q - m³/s) and hydraulic 

transmissivity (T- m²/s). The value of the aquifer thickness (b) multiplied by the 

hydraulic conductivity (K) provides the value of the hydraulic transmissivity. 

   

   
  

   

   
 
 

 
               

 

 
 

Figure 2 - Two-dimensional mesh of finite differences. 

 

2.2. Iterative numerical methods 

Jacobi method uses data from the previous iteration to update the calculations. Equation 

13 is adapted for use in the Jacobi iterative method where the index v is the number of 

the iteration. 

    
  

      
          

          
          

   

 
                   

 

Gauss-Seidel through the equation 14 uses data from the previous and from the current 

iteration for to recalculate the values in each iteration. 
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SOR method - based on the Gauss-Seidel method i troduces a rela atio  parameter (α) 

to accelerate the iterative process. 

    
           

     
      

          
        

          
 

 
                   

 

These iterative methods use as stopping criterion a numerical precision user-defined or a 

limit number of iterations. 

An analytical solution to this problem can be obtained by the expression 16: 

   
     

 
  

   
                      

where R is the radius of the point of calculation with respect to the well and R∞ is the 

radius of the border not affected by the action of the extraction flow. (ICHIRO et al., 

2003) 

 

3. DIFIN PROGRAM 

The computer program DIFIN in VBA language, developed for application of numerical 

methods shows the main screen reproduced in Figure 3 where the user must enter the 

values of physical and numerical parameters like cell spaces of the mesh, hydraulic 

head, flow-rate of extraction, conductivity, thickness of the aquifer, values of 

equipotential lines and numerical precision as criteria of stop of iterations.  

 
 

Figure 3 - Main screen of the DIFIN program. 

To change the values the user must click on the fields, so a box will appear for entering 

values as shown in Figure 4. 
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Figure 4 - Box for change values. 

 

The next step is to locate the well catchment in the coordinate system of the finite 

difference mesh pressing the button "Marcar poço" and clicking on a node in the mesh 

as shown by Figure 5. 

 

Figure 5 - Positioning the well on the coordinate system. 

 

Pressing the "Superfície" button we obtain the analytical solution for the lowering the 

water table. In the window a map of hydraulic head values will be displayed in 

grayscale as well as in the numerical displays "Coordenadas" and "h (mca)" values 

according to the cursor position, as can be noticed in the reproduction of Figure 6 
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Figure 6 - Colormap grayscale - Hydraulic head. 

 

The solution in colormap grayscale can be changed to map of equipotential lines 

through the "Isolinhas" button showing a result as shown in Figure 7. 

 

Figure 7 - Equipotential lines - Hydraulic head. 

 

To start the numerical solutions the user must define a stopping criterion for the 

iterative processes. Clicking on the "Critério de parada" button a window of options will 

appear. In this window the user sets the operating parameters of the iterative methods 

according to Figure 8. 
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Figure 8 - Operating parameters of the iterative methods. 

 

Clicking on "Jacobi" button will start the numerical procedure and the equipotential 

lines are drawn on the results window and hydraulic profile in the lower window and 

the convergence graph in the left display. Numerical values can be seen in displays 

"Coordenadas" and "h (mca)" by positioning the cursor over the windows. The result 

can be observed through the reproduced screen in Figure 9. 

 

Figure 9 - Result for the Jacobi method. 

 

After the execution of the Jacobi procedure, the button "Gauss-Seidel" will be available 

to actuation and will provide the execution of the subroutine Gauss. The source code of 

the subroutine Gauss is reproduced in Table 1. This code in VBA language presents the 

variables listed in Table 2. 
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Sub Gauss() 

If px = 0 And py = 0 Then 

    For Y = 0 To grid - 1 

    For X = 0 To grid - 1 

        If X = 0 And Y = 0 Then 

            potnum(X, Y) = (2 * potnum(X + 1, Y) + 2 * potnum(X, Y + 1) - CDbl(Label3(3).Caption) / (CDbl(Label3(8).Caption) * 

86400)) / 4 

        ElseIf X = 0 And Y = grid Then 

            potnum(X, Y) = (2 * potnum(X + 1, Y) + 2 * potnum(X, Y - 1)) / 4 

        ElseIf X = 0 And Y > 0 And Y < grid Then 

            potnum(X, Y) = (2 * potnum(X + 1, Y) + potnum(X, Y - 1) + potnum(X, Y + 1)) / 4 

        ElseIf X = grid And Y = 0 Then 

            potnum(X, Y) = (2 * potnum(X - 1, Y) + 2 * potnum(X, Y + 1)) / 4 

        ElseIf X = grid And Y = grid Then 

            potnum(X, Y) = (2 * potnum(X - 1, Y) + 2 * potnum(X, Y - 1)) / 4 

        ElseIf X = grid And Y > 0 And Y < grid Then 

            potnum(X, Y) = (2 * potnum(X - 1, Y) + potnum(X, Y - 1) + potnum(X, Y + 1)) / 4 

        ElseIf X > 0 And X < grid And Y = 0 Then 

            potnum(X, Y) = (potnum(X + 1, Y) + potnum(X - 1, Y) + 2 * potnum(X, Y + 1)) / 4 

        ElseIf X > 0 And X < grid And Y = grid Then 

            potnum(X, Y) = (potnum(X + 1, Y) + potnum(X - 1, Y) + 2 * potnum(X, Y - 1)) / 4 

        Else 

            potnum(X, Y) = (potnum(X + 1, Y) + potnum(X - 1, Y) + potnum(X, Y + 1) + potnum(X, Y - 1)) / 4 

        End If 

    Next X 

    Next Y 

Else 

    For Y = 1 To grid - 1 

    For X = 1 To grid - 1 

        If X = pxx And Y = pyy Then 

            potnum(X, Y) = (potnum(X + 1, Y) + potnum(X - 1, Y) + potnum(X, Y + 1) + potnum(X, Y - 1) - CDbl(Label3(3).Caption) 

/ (CDbl(Label3(8).Caption) * 86400)) / 4 

        Else 

            potnum(X, Y) = (potnum(X + 1, Y) + potnum(X - 1, Y) + potnum(X, Y + 1) + potnum(X, Y - 1)) / 4 

        End If 

    Next X 

    Next Y 

End If 

alteração1 = potnum(xnó / CDbl(Label3(0).Caption), ynó / CDbl(Label3(1).Caption)) - anterior1 

anterior1 = potnum(xnó / CDbl(Label3(0).Caption), ynó / CDbl(Label3(1).Caption)) 

alteração2 = potnum(xcnó / CDbl(Label3(0).Caption), ycnó / CDbl(Label3(1).Caption)) - anterior2 

anterior2 = potnum(xcnó / CDbl(Label3(0).Caption), ycnó / CDbl(Label3(1).Caption)) 

isolinhas 

nint = nint + 1 

Picture6.Line -(nint, 10 / CDbl(Label3(2).Caption) * 77 / 13 * potnum(xcnó / CDbl(Label3(0).Caption), ycnó / 

CDbl(Label3(1).Caption)) + 231 / 13), RGB(CR, CG, CB) 

If nint > 332 Then 

    Picture6.Left = 333 - nint 

    HScroll1.Value = -(Picture6.Left) 

End If 

Picture6.Refresh 

Label7.Caption = nint 

Label7.Refresh 

End Sub 
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Table 1 - Source code - Subroutine for the Gauss method. 

Variable Content 

px – py Coordinates of well of groundwater 

Potnum Hydraulic head - numeric solution 

Grid Maximum coordinate in the mesh 

Nint Number of iterations 

Table 2 - Variables in the Gauss method. 

 

Figures 10, 11, 12 and 13 show the evolution of the application of the Gauss method in 

the problem. In the lower graphs, the white lines correspond to the analytical solution. It 

may be noted the successive approximation of the solution with the development of the 

iterative process. There is also a faster result with the Gauss algorithm (green lines) with 

relation to Jacobi algorithm (red lines). 

 

Figure 10 - Gauss method - Iteration 4. 

 

 

Figure 11 - Gauss method - Iteration 20. 
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Figure 12 - Gauss method - Iteration 40. 

 

 

Figure 13 - Gauss method - Iteration 230. 

 

The fastest result is obtained with the SOR algorithm, in this application 84 iterations 

were needed to reach the final solution. From Figure 14 we can see the result on the 

window contours map, the vertical profile in the bottom window and in the graph of 

analysis of results we can verify the convergence to the solution for each iteration with 

blue lines for the SOR algorithm, green lines for the Gauss algorithm and red lines for 

the Jacobi algorithm. 
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Figure 13 - Gauss method - Result after 84 iterations. 

 

4. CONCLUSIONS 

The DIFIN program consists in a basic tool for implementation and comparison of 

iterative methods for numerical solution of differential equations using Finite 

Differences. With the intention to demonstrate the applicability and efficiency of the 

Finite Difference Method in solving differential equations was used a known model and 

also known analytical solution for comparison purposes . The Finite Difference Method 

achieves satisfactory approximations to the exact solution (analytical solution) and the 

algorithms used have adequate convergence. Comparing the algorithms, is possible 

realize the efficiency of the SOR method in fast attainment of the solution, however is 

need to evaluate the coefficient of relaxation to avoid the lack of convergence and 

numerical dispersion . The computational tool provides a wide range of parameters and 

optimal visualization of results and is also an excellent teaching tool. 
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