
Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 16

AN APPROACH TO MODELING AND EVOLUTION OF DATABASE MODEL

THROUGH THE ENTITY FRAMEWORK CODE FIRST
Malcon Miranda Mikami, Keyla Menecrys Sandrino, Maria Salete Marcon Gomes Vaz

Universidade Estadual de Ponta Grossa

E-mails: malconmikami@gmail.com; keilasandrino6@gmail.com, salete@uepg.br

Abstract: Applications that make use of modern database are in constant evolution, both in

relation to changes in data, database schemas and their business rules. It is a challenge to

manage these changes and ensure that everything evolves consistently. This paper presents an

approach to the domain -driven development (DDD) and use of an object-relational mapping

(ORM) tool that have the ability to evolve database schemas.

Keywords: domain-driven development; object-relational mapping; schema evolution

1. INTRODUCTION

The modeling is to create models to explain features and behaviors of a system to represent a

simplification of reality. Models created during step of modeling helps the designer to better

visualize the system, allowing you to specify the structure or behavior of the system, and

provide a guide for their development and document the decisions taken. BOOCH et al.

(2000)

ELMASRI and NAVATHE (2005) stated that the conceptual modeling for database is an

abstraction of a certain reality transcribed into a concept model supported by graphical models

that include details of the database project on an independent level platform.

According to QIU (et al. 2013), unlike traditional applications, the development of database

applications is more complex. For example, consider a system that uses a table to store the

user authentication information and personal data. If the system requirements change and the

system needs to store user authentication information and personal data separately, the

original table split into two new tables, for example: USUARIO_LOGIN and

USUARIO_DETALHES. The data and application code synchronized to be consistent with

the new schemes.

The Model-Driven Architecture (MDA) and Domain-driven design (DDD) EVANS and

FLOWER (2003), are developing approaches directed by models, which use them in various

levels of abstraction starting from a conceptual model. The use of such standards contributes

to creating cross-platform software with greater interoperability and easy to maintain, as the

models created can be changed, have new features added and be recombined. MELLOR

(2005).

According ÖQVIST (2011), the domain-oriented development should not confused with the

initial project development in waterfall model, where the great design before any code

written. DDD, on the contrary, based on refactoring and iterative methods, since it is a

practical impossibility to produce a perfect domain model from the beginning. The model

must evolve along with the software and understanding of staff about domain.

To deal with the changes of information required by the business and the necessary evolution

of systems, many authors propose approach as Soft Domain-Driven Design (SDDD)

SALAHAT (2009), which combines the use of Soft Systems Methodology (SSM), Unified

Modeling Language (UML) and the DDD approach using ubiquitous language to facilitate

communication between developers and domain experts.

For some time, research in the database area started to worry about support for

unconventional applications, which are applications that work with types of non-traditional

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 17

data, such as, for example, spatial data, temporal and spatio-temporal Laender et al. (2005).

Currently there are several models for geographic database modeling such as UML -

GeoFrame LISBON and IOCHPE (1999) and the OMT-G, among others, as well as various

tools for conceptual modeling geographic database using the MDA as ArgoCASEGEO +

TerraLib GAZOLA (et al 2006) and L-OMT Design FROZZA and SCHALY (2010).

Although these tools use the MDA they are linked to specific models and modeling languages

and do not use a generic meta- model and cannot be extended to other geographical models,

as well as incompatible with the relational model..

2. SYSTEMS FOR PRECISION AGRICULTURE

According WILLERS (et al. 2009) the use of new technology for the management, control of

agriculture and agricultural production activities, intends to optimize resources, increase

production, quality and profits. Thus, the use of information technology is an important option

especially in Precision Agriculture (PA), as the use and application of new knowledge in rural

areas help the producer to identify strategies to increase efficiency in the management of

crops, maximizing the profitability of crops and becoming the most competitive and

sustainable agribusiness Medeiros et al. cited ALONÇO (2005)

There are several solutions on the market to meet the technological demands of use in PA, but

not always fully meet the stages of the cycle and / or are proprietary solutions that do not

allow modification, or are just software vendors of equipment / hardware that provide their

products to market.

It is unlikely that a single proprietary system or open completely meets all areas and processes

involved in the PA because of its complexity and breadth. The development of a well-

structured skilled architecture, using components "pluggable" and open communication

standards in service delivery can be the most appropriate solution for information system

construction for use in the PA, however, the difficulty developers to produce a system with

easy to understand code, easy to maintain and produce software with agility in the face of

change, prevents the production of a product that meets the client's needs and has flexibility.

It is rare to find any application that requires not store any data for future research or to

support decision making, whether operational or strategic. The integration of the produced

code and the stored data model, through an object-relational framework allows a lower

development time, where the framework provides the basic data access capabilities, while

developers can focus on application logic. Applications released from fixed code

dependencies on particular mechanism or data storage scheme, since support a conceptual

model that is independent of the physical model or storage.

3. ENTITY FRAMEWORK

The process of mapping of relational structures in objects compatible with a language or

platform known as Object Relational Mapping (ORM). The ORM is a development technique

used to reduce the impedance of the programming oriented to objects using relational

databases. Classes represent the database tables and records of each table represented as

instances of the corresponding classes.

The Entity Framework (EF) is a major tool of persistence present in the.NET platform.

Important to highlight the existence of numerous options based on this type technology for

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 18

many different programming languages: EJB and Hibernate for Java, Castle ActiveRecord

and NHibernate for.NET, CodeIgniter and Zend Framework for PHP.

According LERMA (2010), the central benefit of EF is that it frees you from worrying about

the structure of your database. All your data access and storage done against a conceptual data

model that reflects your own business objects.

With this technique, the programmer does not have to worry about the commands in

Structured Query Language (SQL); it will use a simple programming interface that does all

the work of persistence. In addition, it is not necessary a direct correspondence between the

data tables and program classes. The relationship between the tables where originate the data

and the object that makes it available is set by the programmer, isolating the program code of

the changes to the organization of the data in database tables.

EF offers solutions to minimize the problem of impedance, developer abstracting many details

of the databases, and providing a number of features that greatly increase your productivity.

The Entity Framework architecture details in (Figure 1).

Figure 1 – Entity Framework Architecture

One of the great advantages of the EF was templates allow the creation of databases by way

of a graphical tool, eliminating the need for developers to encode one or more classes

representing the structures of a specific base.

Although this technique has advantages, such as generating a diagram with all classes that

perform object-relational mapping, a new alternative development made available Entity

Framework Code First. Here, the first class encoded to represent structures belonging to a

database used by the application built.

4. DATA MODELING

The Entity Framework Code First EF-CF second ANDRADE (2013), is commonly used

when you want to have greater control for level of source code data model generated because

the classes are written using the POCO approach - Plain Old CLR Object (Old and Simple

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 19

Object CLR) and then is that the database is generated from these classes, thus presenting full

independence with the mapping file.

Developers who follow the principles of DDD where classes encoded first to generate the

required database to persist data often use this approach.

To illustrate the use of Entity Framework Code First, we will represent part of the field of

precision agriculture. As mentioned previously, within the standard Code First representation

tables and views structures made by means of classes that have no direct dependence on the

CS.

To describe entities and their attributes, we must make use of the ubiquitous language; so; the

concept of the word should is clear to everyone involved in the project. The need for

standardized terminology often neglected in the literature; however, it is a matter of critical

importance for a number of reasons seconds SZYKMAN (et al).

The first reason is to reduce ambiguity in terms of modeling. Ambiguities can occur when

multiple terms used to mean the same thing, when the same term used with various meanings.

The distillation of a wide variety of taxonomies in accordance concise eliminates this

problem, but this significantly reduces its occurrence.

A second issue related to the uniqueness, not at the level of individual terms interchangeably,

but the concept level. This makes the processing of information that been shown to be more

difficult, whether it is a human being trying to interpret information modeled by someone

else, or algorithms developed design automation or thinking about a project.

The third reason for the development of a standardized terminology is that it increases the

uniformity of information within the model, providing a greater degree of consistency within

and across design facilitate indexing, searching and retrieving information from them.

In (Figure 2) it is possible to observe examples of classes used in conjunction with the EF-CF.

In this particular case, the glebe - “Gleba” and farm – “Fazenda” class have properties whose

names and types must generate the database settings.

Figure 2 – Modeling Glebe and Farm Entities

For the EF understand that these objects are part of the database, we must perform the mapping

of entities (Figure 3) and after adding them to the application context (Figure 4)

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 20

/

Figure 3 – Completing the mapping of entities

Figure 4 – Adding classes to the context

During the development of a project, changes may occur in the planning, the code and the bank.

Changes in the code are simple to get around, because we have tools for code version control,

allowing back, joining versions and control the lives of the code. However, the control versions

of relational database (RDBMS) is a bit more complex.

With the Entity Framework Code First can enable a property called Migrations (Migration) that

with her, we can have versions of the database, go back versions and keep track. The Migrations

oversees the POCO classes and creates update methods and downgrade to the required code

(Figure 5) to apply the changes.

Figure 5 – Table _Migrations with the upgrade scripts

For the article in question, we left the Migrations enabled from the start of the project, so the

Migrations maintained the database always synchronized with the entities as we can see in the

Figure 6.

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 21

Figure 6 – Database structure

5. SPATIAL DATA

According BELUSSI, geographic information systems are more complex and structured than

those treated in traditional information systems and this required an evolution of database

technology available and the database design approach for working with data space;

Moreover, the traditional conceptual modeling approaches have been extended to deal with

the complexity and richness of spatial databases to provide:

 Basic spatial data in terms of data structures (e.g., point, line and polygon) and

operations (e.g., boundary, perimeter, area, etc.) to describe and manipulate the

location and extent of geometric objects included in a reference space 2 or 3

dimensions;

 Spatial relationships (for example, topological relationships such as adjacency and

containment) between geometric objects needed for the spatial data query; and

 Spatial integrity constraints between objects space needed to maintain the integrity,

and therefore the quality of a spatial database.

The EF can handle geographic data using types DbGeography and DbGeometry types. The

type of data Geometry represents data in a Euclidean coordinate system (plan). The type of

Geography data represents ellipsoidal data as a geographic coordinate system and stores data

such as latitude and longitude coordinates.

To illustrate the use, will add two new properties to the farm class location with type

DbGeography data, which will guard the position of office or central position of the farm and

area – “area”, the DbGeometry type, which will guard the polygon representing the farm.

For Gleba class, add the property Area, the DbGeometry type, which will guard the polygon

representing the plot. (Figure 7)

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 22

Figure 7 – Property DbGeography e DbGeometry

The use of complex spatial data is perceived by EF, and this remained synchronized model

represented by data entities in the database (Figure 8).

Figure 8 – Database with spatial data

Working with the spatial properties continues to done in simple and integrated spatial

functions of the database. In the Figure 9, we will send a query to the database manager,

which should list in a certain amount of farms (n) ordered by the size of their areas in

descending order.

Figure 9 – Seeking in spatial data

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 23

6. CONCLUSIONS

The application of the field-oriented development within an iterative software development

process promises to reduce the inherent complexity of software construction. There are two

essential aspects for development. The first is about modeling to capture and distill real-world

knowledge in a field of abstraction. The second, the architectural design of the software. It is

encapsulating a business model in the global architectural context as well as the logic of

structuring the business in the design level.

The adoption of the domain driven design practices depends on the availability of suitable

tools, in this case the Entity Framework, which not only allowed the realization of domain

modeling, but also address practical issues in implementing the application as persistence and

transaction management.

Using the Entity Framework Code First was possible to minimize the problem of impedance

between the logical models and physical model application data through constant evolution

models. The tool can automatically generate the physical data model in the ANSI SQL

standard 92/99/03, compatible with database management systems and geospatial data since

their managers have such settings.

REFERENCES

ALONÇO, A. S. Desenvolvimento de um veículo aéreo não tripulado (VANT) para

utilização em atividades inerentes à agricultura de precisão. Congresso brasileiro de

engenharia agrícola, 35. Canoas. 2005.

ANDRADE, W.; Entiry Framework Code Firts – Primeiros Passos, Publicado em:

Development, 14 out 2013, Disponível em: <http://sloblog.io/+dev/nIvR5FdWsr0/ entity-

framework-code-first-primeiros-passos> Access at: Dez/2013.

BELUSSI, A.; Mauro Negri, Giuseppe Pelagatti. Modelling Spatial Whole–Part

relationships using an ISO-TC211 conformant approach

BOOCH, G., RUMBAUGH, J., and JACOBSON, I. UML: Guia do Usuário. 2000. Editora

Campus.

ELMASRI, R.; e NAVATHE, S. Sistemas de banco de dados. 2005. Pearson Addison

Wesley.

EVANS, E.; FOWLER, M. Domain-Driven Design: Tackling Complexity in the Heart of

Software. Prentice Hall. 2003

GAZOLA, A., SAMPAIO, G. B., Filho, J. L. Argocasegeo + terralib: Bancos de dados

geográficos para pequenas aplicações GIS. Workshop de Computação e Aplicações. 2006.

Anais do XXVI Congresso da SBC, volume 1.

LAENDER, A.; DAVIS, C.; BRAUNER, D.; CÂMARA, G., QUEIROZ, G., BORGES, K.;

FERREIRA, K.; LIGIANE, V. L., CARVALHO, M. Bancos de Dados Geográficos.

MundoGEO. 2005.

LERMAN, J. Programming Entity Framework, Second Edition. O’Reilly. 2010

LISBOA, F.; IOCHPE, C. Specifying analysis patterns for geographic databases on the

basis of a conceptual framework. 1999. Proceedings of the 7ª ACM GIS.

MELLOR, S. J., SCOTT, K., UHL, A., and WEISE, D. MDA Destilada: Princípios de

Arquitetura Orientada por Modelos. Ciência Moderna. 2005

Iberoamerican Journal of Applied Computing ISSN 2237-4523

V.5, N.1, Apr/2015 Page 24

ÖQVIST, J. Becoming More Agile With Domain-Driven Design. Jesper – Oqvist. 2011

QIU, D.; LI, B.; SU, Z. An Empirical Analysis of the Co-evolution of Schema and Code in

Database Applications. 9th Joint Meeting on Foundations of Software Engineering. Pages

125-135. 2013

SALAHAT, M.; WADE, S. UL-HAQ, I. Application of a Systemic Soft Domain-Driven

Design Framework. World Academy of Science, Engineering and Technology, 57. 2009

SCHALY, K. W.; FROZZA, A. (2010). Uma ferramenta para gerar bancos de dados

geográficos a partir de diagramas OMT-G. XI Escola Regional de Banco de Dados.

SZYKMAN, S.; SRIRAM, R. D., BOCHENEK, C.; RACZ, J. W.; SENFAUTE, J. Design

Repositories: Next-Generation Engineering Design Databases. National Institute of

Standards and Technology.

WILLERS, J. L.; JALLAS, E.; MCKINION, J. M.; SEAL, M. R.; TURNER, S. Advanced in

Modeling Agricultural System. Springer, 257f. 2009

