Identificação de processos erosivos com geotecnologias gratuitas

Identification of erosive processes with free geotechnologies

Identificación de procesos erosivos con geotecnologías libres

Bianca Souza de Oliveira https://orcid.org/0000-0002-8763-5273 biancasouzadeoliveirabso@gmail.com Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande, MS, Brasil

Antonio Conceição Paranhos Filho https://orcid.org/0000-0002-9838-5337 antonio.paranhos@ufms.br Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande, MS, Brasil

Eliane Guaraldo https://orcid.org/0000-0003-2526-1293 eliane.guaraldo@ufms.com Universidade Federal de Mato Grosso do Sul, UFMS, Campo Grande, MS, Brasil

Resumo: A erosão linear é um dos tipos de erosão hídrica que mais causam problemas ambientais devido à concentração de fluxos hídricos que tem grande potencial de degradação da terra. Este trabalho tem como objetivo identificar áreas de solo erodido que ocorrem na Bacia Hidrográfica do Rio Paraíso utilizando geotecnologias gratuitas através da vetorização de erosões identificadas através da análise de imagens de satélite de alta resolução espacial disponíveis gratuitamente na plataforma Google Earth. Os resultados obtidos apontam que na Bacia Hidrográfica do Rio Paraíso a maioria das erosões lineares são feições do tipo sulco, forma mais branda desse tipo de processo erosivo. Foram identificados 463 eixos de erosão, compostos por sulcos, ravinas e voçorocas. O acompanhamento temporal de imagens elucidou a origem do assoreamento identificado em trecho do Rio Paraíso próximo à rodovia MS-316. Assim, a disponibilidade de imagens de satélite de alta resolução espacial associada aos recursos disponíveis para o processamento de dados espaciais, permite analisar áreas extensas e identificar processos erosivos com maior agilidade, auxiliando na identificação das medidas a serem adotadas a fim de conter e/ou recuperar os locais atingidos por este problema ambiental.

Palavras-chave: Geoprocessamento, ravina, voçoroca, extensão de erosão.

Abstract: Linear erosion is one of the types of water erosion that cause the most environmental problems due to the concentration of water flows that has great potential for land degradation. This work aims to identify areas of eroded soil that occur in the Paraíso River Watershed using free geotechnologies through the vectorization of erosion identified through the analysis of high spatial resolution satellite images freely available on the Google Earth platform. The results obtained point out that in the Paraíso River watershed most of the linear erosions are furrow-type features, the mildest form of this type of erosive process. A total of 463 erosion axes were identified, composed of furrows, ravines, and gullies. The temporal monitoring of images has elucidated the origin of the silting identified in a stretch of the Paraíso River near the MS-316 highway. Thus, the availability of high spatial resolution satellite images associated with the resources available for processing spatial data makes it possible to analyze extensive areas and identify erosive processes with greater agility, helping to identify the measures to be adopted to contain and/or recover the sites affected by this environmental problem.

Keywords: Geoprocessing, ravine, gully, erosion extension.

Resumen: La erosión lineal es uno de los tipos de erosión hídrica que más problemas ambientales causan debido a la concentración de flujos de agua que tiene un gran potencial de degradación de la tierra. Este trabajo tiene como objetivo identificar las áreas de suelo erosionado que se producen en la cuenca del río Paraíso utilizando geotecnologías libres a través de la vectorización de la erosión identificada mediante el análisis de imágenes de satélite de alta resolución espacial disponibles de forma gratuita en la plataforma Google Earth. Los resultados obtenidos indican que la mayoría de las erosiones lineales en la Cuenca Hidrográfica del Río Paraíso son rasgos de tipo surco, que es la forma más suave de este tipo de proceso erosivo. Se han identificado un total de 463 ejes de erosión, compuestos por surcos, barrancos y cañadas. El seguimiento temporal de las imágenes ha permitido dilucidar el origen del aterramiento identificado en un tramo del río Paraíso cercano a la carretera MS-316. Así, la disponibilidad de imágenes satelitales de alta resolución espacial, asociada a los recursos disponibles para el procesamiento de datos espaciales, permite analizar extensas áreas e identificar procesos erosivos con mayor agilidad, ayudando a identificar las medidas a adoptar para contener y/o recuperar los sitios afectados por este problema ambiental.

Palabras clave: Geoprocesamiento, surcos, barrancos, extensión de la erosión.

INTRODUÇÃO

A mistura de partículas sólidas de origem mineral e orgânica, água e ar formam um sistema constituído por três fases da matéria, sólido, líquido e gasoso, os quais caracterizam a composição de solos minerais (Reinert & Reicher, 2006). Os constituintes do solo atribuem características importantes a este recurso natural. A proporção entre os seus componentes indica a sua funcionalidade na natureza e nas atividades advindas da interferência humana.

O estudo das propriedades físicas e mecânicas do solo contribui para o entendimento de como este recurso da natureza se comporta quando exposto a intempéries e atividades antrópicas, possibilitando a tomada de decisão mais acertada com relação ao seu uso adequado e práticas de manejo e conservação.

Uma das formas de degradação do solo que ocorre naturalmente, mas que pode ser agravada por práticas humanas, é a erosão do solo. A erosão hídrica é a mais comum em países tropicais como o Brasil, seja causada pelo impacto das gotas da chuva ou pelo escoamento superficial da água sobre o solo. Esse processo erosivo que se caracteriza pelo desprendimento, arraste e deposição de partículas de solo, pode provocar sérios impactos ambientais nos locais onde ocorre e nas adjacências.

Uma das formas de erosão hídrica mais grave ocorre quando há a concentração do escoamento hídrico superficial. A denominada erosão linear ocorre em decorrência da convergência de fluxos hídricos sobre a superfície do solo. Segundo Araujo (2011), a erosão linear pode ser classificada em três feições principais: sulco (erosão linear caracterizada por profundidade não superior a 0,5 m), ravina (erosão linear que apresenta perfil em "V" e cuja profundidade é superior a 0,5 m) e voçoroca (erosão linear com perfil em "U", de grande proporção e que geralmente atinge o nível d'água).

As consequências decorrentes das erosões lineares podem ser graves, além do solo, os nutrientes presentes na terra também são carreados com a água, o que ocasiona o empobrecimento do solo no local e que pode causar a eutrofização de corpos d'água a jusante da área atingida, dependendo da quantidade de elementos presentes no solo.

A determinação das causas que levam ao aparecimento e agravamento dos processos erosivos é uma das formas preventivas de lidar com o problema. O estudo de caracterização da bacia hidrográfica que contempla a área atingida é fundamental para identificar as características naturais e as atividades antrópicas responsáveis por este processo de degradação da terra.

A utilização de geotecnologias torna possível o mapeamento dos processos erosivos de forma mais rápida e abrangendo áreas maiores do que no tradicional trabalho de campo, sendo assim, configura-se como um mecanismo de identificação que corrobora com os estudos de grandes áreas, como é o caso de uma bacia hidrográfica.

O geoprocessamento pode ser considerado como um conjunto de tecnologias, métodos e processos para a realização do processamento digital de dados e informações geográficas (Pereira & Silva, 2001). Já o sensoriamento remoto é caracterizado pela obtenção de dados ou informações de amostras que estão distantes do sensor que os adquire (Paranhos Filho et al., 2016). Estes recursos tecnológicos podem ser utilizados no trabalho de identificação de processos erosivos. A utilização de softwares voltados para o processamento de informações espaciais viabiliza o tratamento dos dados geográficos ambientais coletados de forma remota.

MATERIAIS E MÉTODOS

Área de estudo

Este estudo compreende a Bacia Hidrográfica do Rio Paraíso - BHRP, que faz parte da unidade territorial de três municípios de Mato Grosso do Sul, Paraíso das Águas, Costa Rica e Chapadão do Sul. O Município de Paraíso das Águas abrange uma área de 5.061,433 Km², Costa Rica e Chapadão do Sul, por sua vez, 4.159,384 Km² e 3.251,522 Km², respectivamente (Instituto Brasileiro de Geografia e Estatística [IBGE], 2019). A extensão territorial da BHRP delimitada neste trabalho, contempla uma área de 957,761 Km², sendo 196,253 Km² pertencentes ao município de Chapadão do Sul (6,04% do total da área do município), 306,726 Km² a Costa Rica (7,37%) e 454,782 Km² a Paraíso das Águas (8,99%).

A Figura 1 apresenta a cobertura e uso do solo a partir de uma composição 843 aplicada à imagem Sentinel 2B (resolução espacial de 10 m). A área de estudo é caracterizada principalmente por cobertura do solo do tipo pastagem, agricultura, vegetação densa, vegetação seca e solo exposto.

O clima predominante, observando-se a classificação climática de Koppen Geiger, é do tipo tropical com inverno seco e estação chuvosa no verão (Aw) (Secretaria de Estado de Meio Ambiente, Desenvolvimento Econômico, Produção e Agricultura Familiar [SEMAGRO], 2020).

Figura 1: Localização e cobertura do solo na BHRP, entre os municípios de Chapadão do Sul, Costa Rica e Paraíso das Águas, MS: vegetação densa (cor vermelha), pastagem (cor verde claro), agricultura (cor rosa), vegetação seca (cor branca) e solo exposto (cor verde escuro).

Dados utilizados e processamento de informações

O trabalho apresentado empregou dados do radar Alos Palsar referentes ao ano de 2011 (Alaska Satelite Facilite [ASF], 2011), que apresenta resolução espacial de 12,5 m, para obter a drenagem e consequentemente a divisão de sub-bacias hidrográficas da área. Além disso, foram utilizadas imagens do satélite Sentinel-2B, sensor MSI (*Multi Spectral*)

Instrument), imagem de 28/ago./2020 (*United States Geological Survey* [USGS], 2020), com resolução espacial de 10 m. Este dado serviu para corrigir a drenagem gerada por método semiautomático, visto apresentar um maior detalhamento em relação ao dado utilizado para gerar o arquivo vetorial que delimita os cursos hídricos.

A elaboração dos mapas contendo as informações processadas se deu a partir de arquivos vetoriais disponíveis no *site* do Instituto Brasileiro de Geografia e Estatística (IBGE, 2019).

Drenagem e delimitação de sub-bacias hidrográficas

A primeira etapa para delimitar o Rio Paraíso e seus afluentes foi realizada através do processamento da imagem do radar Alos Palsar. O dado utilizado é denominado *Digital Elevation Model* (DEM) e contém informações referentes à altitude da área analisada, disponibilizando uma resolução espacial de 12,5 m. A extração dos cursos hídricos presentes na BHRP foi feita a partir do *plugin* TerraHidro disponível no *software* TerraView 4.2.2 (Instituto Nacional de Pesquisas Espaciais [INPE], 2010). Após a realização do processamento, obteve-se um arquivo vetorial contendo a drenagem da área de interesse.

Por ser um processo semiautomático de extração de drenagem, correções posteriores ao processo se fizeram necessárias para remover ou alterar alguns cursos hídricos gerados que não correspondem aos verificados em campo. Para este procedimento, o arquivo vetorial de drenagem foi sobreposto à imagem de satélite Sentinel 2B, cuja composição 843 (banda 08: NIR; banda 04: *Red*; banda 03: *Green*) dá destaque ao tipo de cobertura do solo, evidenciando principalmente a vegetação densa, processo que destaca os cursos d'água existentes.

Posteriormente, utilizando o arquivo vetorial de drenagem, extraíram-se as sub-bacias hidrográficas presentes na área de estudo, e construiu-se a BHRP a partir da união das feições das sub-bacias hidrográficas geradas.

Vetorização dos eixos de erosão e análise temporal de possíveis áreas de contribuição para o assoreamento do Rio Paraíso

A vetorização das erosões presentes em campo foi realizada a partir da fotointerpretação de imagens de satélite do *Google Earth*, de alta resolução espacial, e calculadas suas dimensões utilizando a ferramenta Calculadora Raster do *software* QGis 3.4.14 (QGIS Development Team, 2019).

A identificação das possíveis áreas de contribuição para o assoreamento de um trecho do Rio Paraíso localizado no município de Paraíso das Águas, próximo à rodovia MS-316, foi realizado com base na análise temporal de imagens *Google Earth* nos anos de 2004, 2013, 2016 e 2020, períodos em que as imagens respectivas a cada ano estavam disponíveis na plataforma no momento da análise.

RESULTADOS E DISCUSSÃO

A delimitação da drenagem da área e sub-bacias, corrigidas algumas incoerências geradas a partir do processo semiautomático de extração de drenagem, pode ser observada na Figura 2.

Figura 2: Área de drenagem da BHRP, MS. (A) Drenagem extraída de forma semiautomática do DEM;
(B) Na cor laranja, a drenagem extraída inicialmente e na cor azul, a drenagem corrigida após a remoção e readequação dos vetores representantes dos cursos hídricos presentes na BHRP.

O processo de vetorização de áreas erodidas na BHRP resultou na identificação de 463 eixos de erosão, variando entre sulcos, ravinas e voçorocas, predominado a erosão linear do tipo sulco, erosão linear mais branda do que as demais devido às suas dimensões reduzidas (Fig. 3).

Verificou-se que a maioria dos eixos de erosão vetorizados se encontra próxima aos cursos hídricos, o que pode estar relacionada tanto a causas naturais quanto à intervenção humana. Além das ocorrências próximas a cursos d'água, a análise das imagens de satélite evidenciou também erosões em áreas de pastagem, nas trilhas preferenciais criadas pelo gado bovino ao longo do tempo.

Figura 3: Eixos de erosão na BHRP, MS. (A) Erosão linear do tipo sulco; (B) Erosão linear do tipo ravina; (C) Erosão linear do tipo voçoroca.

A maioria dos eixos apresentou uma extensão pouco significativa em termos de ocupação de espaço, fato que pode ser correlacionado à presença de erosão linear do tipo sulco. As ravinas e voçorocas apresentam extensões maiores e são diferenciadas por sua profundidade e largura. A Figura 4 evidencia a extensão dos eixos de erosão identificados na BHRP e as medidas constam da Tabela 1 em Apêndice. A maior extensão identificada apresenta 1.038,041 m (eixo identificado na Tabela 1 e na Figura 4 pelo número 174), representando uma erosão linear do tipo voçoroca existente no município de Costa Rica. A menor extensão identificada (item 81 da tabela 1) é um eixo de erosão linear do tipo sulco de 3,286 m, localizada no município de Chapadão do Sul.

Figura 4: Localização e extensão dos eixos de erosão identificados na BHRP, MS.

A análise das imagens de satélite revelou pontos de acúmulo de sedimentos em um trecho do Rio Paraíso, localizado na porção que cabe ao território do Município de Paraíso das Águas, a jusante dos eixos de erosão identificados anteriormente. O assoreamento de um trecho do rio, que fica próximo a Rodovia MS-316, encontra-se em estágio avançado, comprometendo a capacidade de escoamento das águas pelo leito do rio, visto que os bancos de areia formados impedem o curso natural das águas e potencializam cheias e inundações.

A princípio, antes de realizar o processo de vetorização das erosões, supunha-se que a concentração de sedimentos no leito do rio teria origem em processos erosivos pluviais, como um processo de agravamento de alguma erosão linear próxima ao leito do rio. No entanto as imagens revelaram que ao longo dos anos a água foi retrabalhando o solo em um ponto a montante do local em que o assoreamento foi identificado, levando a acreditar que a erosão fluvial seja a principal responsável pelo processo que acarretou o acúmulo de sedimentos no leito do Rio Paraíso (Fig. 5). A imagem de 2004 não evidencia acúmulo de sedimentos no curso de água, porém na de 2013, nove anos depois, verifica-se a presença de bancos de areia formados que já interferem no escoamento hídrico do Rio Paraíso no ponto (B), sendo o ponto (A) caracterizado pelo estreitamento do curso hídrico e a presença de uma pequena ilha coberta por vegetação. Imagens de 2016 e 2020 ilustram o agravamento do acúmulo de sedimentos no leito do rio, que se expande até o ponto C,

a jusante da rodovia MS-316. Em 2016, apesar da interferência na visualização da imagem em decorrência de nuvens, nota-se que o ponto (C) ainda não apresentava acúmulo de sedimentos, entretanto seu assoreamento pode ser observado na imagem em 2020.

Figura 5: Acompanhamento temporal da origem e evolução do assoreamento, de 2004 a 2020, no trecho da BHRP em Paraíso das Águas, MS.

Fonte: (Google, 2020).

CONCLUSÃO

O processamento e análise dos dados mostraram que a vetorização de erosões realizada a partir de imagens de satélite do *Google Earth* é viável. Por disponibilizar imagens de alta resolução espacial, esta plataforma gratuita possibilita o trabalho de identificação de processos erosivos como erosão linear. Além disso, a análise de imagens em períodos diferentes ao longo do tempo mostrou-se viável para a detecção de alterações na paisagem, mesmo não sendo disponibilizado um horizonte contínuo de fornecimento de imagens.

Assim, a disponibilidade de imagens de satélite de alta resolução espacial associada aos recursos disponíveis para o processamento de dados espaciais, permite analisar áreas extensas e identificar processos erosivos com maior agilidade, auxiliando na identificação das medidas a serem adotadas a fim de conter e/ou recuperar os locais atingidos por este problema ambiental.

AGRADECIMENTOS

Pesquisa apoiada pela Fundação Universidade Federal de Mato Grosso do Sul - UFMS/MEC.

Agradecemos ao Conselho Nacional de Pesquisa Científica e Tecnológica (CNPq) e à Prefeitura do Município de Paraíso das Águas, que financiaram o projeto de Inovação *Geotecnologias e Inovação para Análise de Erosão e Planejamento Ambiental da Paisagem de Paraíso das Águas* no qual se insere este trabalho, com uma bolsa de Mestrado à Bianca e uma bolsa de Iniciação Científica (processo CNPq 01030/2020-0). Também agradecemos ao CNPq pela bolsa de produtividade em pesquisa de Antônio Paranhos Filho (CNPq Processo 305013/2018-1).

Agradecemos ainda a CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil) pelo acesso ao portal de periódicos e ao PGRN - Programa de Pós-Graduação em Recursos Hídricos da Universidade Federal de Mato Grosso do Sul.

REFERÊNCIAS

Araujo, T.P. (2011). Estudo do desencadeamento das erosões lineares concentradas em uma área do município de São Pedro/SP. Tese de Doutorado. Universidade de **São Paulo**, USP, São Paulo, SP, Brasil. Recuperado de https://Www.Teses.Usp.Br/Teses/Disponiveis/18/18132/Tde-06122011-104236/Publico/Dissertacao. Thiago.Pdf>.

Alaska Satelite Facilite (2011). *DEM from Alos Palsar Image*. Sensor Msi.Alaska Usa. Recuperado de .

Instituto Brasileiro de Geografia e Estatística (2019). *Cidades: Área da unidade territorial*. Recuperado de ">https://Cidades.Ibge.Gov.Br/>.

Instituto Nacional de Pesquisas Espaciais (2010). *Terraview. Versão* 4.2.2. São José Dos Campos. Recuperado de http://www.Dpi.Inpe.Br/Terralib5/Wiki/Doku.Php

Paranhos Filho, A.C., Mioto, C.L., Pessi, D.D. ..., & Chaves, J. (2016). *Geotecnologias em Aplicações Ambientais*. Campo Grande: Ed. UFMS.

Pereira, G.C. & Silva, B.-C.N. (2001). *Geoprocessamento e Urbanismo*. Salvador: Ed. UFBA. Recuperado de https://Repositorio.Ufba.Br/Ri/Handle/Ri/7961.

QGIS Development Team. (2019) *Qgis Geographic Information System. Versão* 3.4.14. Recuperado de https://Www.Qgis.Org/En/Site/Forusers/Download.Html.

Reinert, J.E., & Reichert, D.M. (2006). *Propriedades físicas do solo*. Santa Maria: UFSM. Recuperado de https://Www.Researchgate.Net/Publication/337498761_Reinert_Reichert_-Propriedades_Fisicas_Do_Solo.

Secretaria de Estado de Meio Ambiente, Desenvolvimento Econômico, Produção e Agricultura Familiar (2020). *Plano Estadual de Resíduos Sólidos de Mato Grosso do Sul.* Recuperado de https://www.Imasul. Ms.Gov.Br/Wp-Content/Uploads/2020/07/Pers-Ms-Volume-I-1.Pdf>.

United States Geological Survey (2020). *Imagens Sentinel-2b. Sensor Msi. Canais* 1, 2, 3, 4, 5, 6, 7, 8, 8a, 9, 10, 11, 12. *Identificação* 22 Kbe. Recuperado de <Https://Earthexplorer.Usgs.Gov/>. Data.

Recebido em 17/nov./2021 Aceito em 02/maio/2022 Publicado em 01/set./2022

APÊNDICE

Identificação	Extensão do eixo (m)	Identificação	Extensão do eixo (m)
1	76,099	45	17,108
2	42,349	46	48,714
3	78,914	47	16,098
4	7,552	48	21,218
5	6,156	49	26,221
6	19,692	50	44,718
7	20,849	51	8,27
8	5,073	52	6,215
9	18,085	53	38,078
10	24,682	54	22,822
11	6,017	55	42,584
12	13,642	56	34,671
13	18,682	57	22,795
14	8,235	58	32,806
15	33	59	41,5
16	56,489	60	31,286
17	31,373	61	8,096
18	20,783	62	21,684
19	50,971	63	37,744
20	13,035	64	12,031
21	16,126	65	12,862
22	70,368	66	52,25
23	32,745	67	27,574
24	10,324	68	84,147
25	36,142	69	128,752
26	17,037	70	16,892
27	153,402	71	137,144
28	16,377	72	7,2
29	52,312	73	36,409
30	19,095	74	39,512
31	20,16	75	32,989
32	26,576	76	20,877
33	19,004	77	17,653
34	11,151	78	20,775
35	9,751	79	14,726
36	13,006	80	64,858
37	10,503	81	3,286
38	13,072	82	15,522
39	88,223	83	13,173
40	28,783	84	62,148
41	36,303	85	66,041
42	22,471	86	48,15
43	12,114	87	44,533
44	5,04	88	69,629

Tabela 1: Extensão dos eixos de erosão identificados na BHRP.

Identificação	Extensão do eixo (m)
89	23,384
90	27,556
91	60,62
92	15,562
93	45,243
94	22,157
95	23,493
96	8,736
97	13,575
98	5,806
99	16,661
100	8,953
101	39,176
102	63,322
103	20,784
104	10,815
105	24,872
106	43,752
107	37,253
108	25,448
109	15,438
110	102,073
111	58,989
112	30,178
113	22,55
114	32,117
115	259,046
116	64,842
117	21,93
118	26,289
119	58,874
120	18,276
121	97,573
122	15,054
123	46,344
124	31,889
125	21,923
126	163,938
127	176,437
128	55,59
129	187,647
130	55,271
131	97,098
132	93,512
133	22,587
134	153,562
135	49,505
	·

Identificação	Extensão do eixo (m)
136	28,918
137	9,631
138	4,966
139	20,58
140	15,119
141	15,11
142	12,719
143	13,559
144	31,19
145	13,149
146	27,21
147	26,455
148	19,791
149	23,897
150	10,657
151	11,721
152	8,551
153	21,897
154	24,088
155	27,297
156	9,678
157	8,299
158	6,259
159	21,151
160	25,566
161	7,875
162	472,325
163	48,598
164	219,811
165	14,532
166	43,313
167	40,906
168	27,534
169	28,398
170	37,931
171	25,863
172	96,737
173	35,001
174	471,138
175	1038,041
176	160,405
177	53,704
178	54,043
179	41,327
180	58,672
181	17,157
182	51,208

Extensão do eixo (m)
30,258
26,398
30,555
9,115
22,74
33,429
7,124
7,027
11,879
14,498
13,372
29,732
17,522
121,722
14,791
30,871
70,917
20,21
21,609
281,896
25,217
29,241
92,354
42,593
9,202
16,398
13,578
54,464
28,973
11,224
98,764
9,235
18,693
24,33
93,472
30,903
54,995
44,642
24,084
61,016
69,656
33,031
46,415
20,236
18,789
27,79
546,782

Identificação	Extensão do eixo (m)
230	6.201
230	43 847
232	13.61
233	32 659
234	25.981
235	55.579
236	21.442
237	10.238
238	20.51
239	29,695
240	54 607
241	16.148
211	14 464
242	34 346
243	19 756
244	35 588
245	15.481
240	158 084
247	1/ 196
240	33.046
249	11 78
250	11,70
251	30 / 20
252	18 193
253	23 242
255	31 913
256	21 519
250	22,917
258	9.817
259	36 289
260	82 514
260	58 391
261	27.627
262	22,095
264	7 073
265	14 627
265	12 445
267	11 201
267	196 454
200	112 502
20)	15 762
270	9,938
271	32 183
272	27 732
273	36 138
275	25 474
275	20,171
270	27,07 t

Identificação	Extensão do eixo (m)
277	110,103
278	116,002
279	22,07
280	38,903
281	25,891
282	33,195
283	35,471
284	10,619
285	54,8
286	158,467
287	13,69
288	18,144
289	13,843
290	16,565
291	52,748
292	17,892
293	136,897
294	144,584
295	83,993
296	53,42
297	265,961
298	31,014
299	471,053
300	87,225
301	42,825
302	37,098
303	43,497
304	12,414
305	22,691
306	87,731
307	105,441
308	12,631
309	51,935
310	10,378
311	9,026
312	6,757
313	34,232
314	11,05
315	20,189
316	123,955
317	32,788
318	12,808
319	25,558
320	13,79
321	23,704
322	18,728
323	52,155

Identificação	Extensão do eixo (m)
324	24,032
325	15,532
326	236,255
327	12,928
328	17,033
329	39,815
330	14,52
331	33,133
332	50,107
333	77,004
334	9,731
335	48,823
336	41,099
337	31,297
338	17,058
339	22,341
340	9,476
341	30,841
342	9,487
343	22,022
344	20,07
345	14,388
346	21,55
347	34,928
348	33,822
349	58,24
350	14,138
351	39,528
352	55,063
353	341,928
354	329,314
355	42,597
356	135,465
357	79,033
358	212,835
359	76,567
360	73,59
361	32,382
362	50,501
363	43,036
364	47,524
365	32,157
366	30,952
367	29,008
368	18,781
369	30,377
370	106,998

Terr@Plural, Ponta Grossa, v.16, p. 1-17, e2219806, 2022.

Identificação	Extensão do eixo (m)
371	51,638
372	75,101
373	190,388
374	50,81
375	39,55
376	226,167
377	31,555
378	19,235
379	42,921
380	60,984
381	21,238
382	41,556
383	14,327
384	11,76
385	16,297
386	103,68
387	113,427
388	92,471
389	72,239
390	79,32
391	37,513
392	60,469
393	250.657
394	166,809
395	103,466
396	74.022
397	79,237
398	172,619
399	186.2
400	43.901
401	12,599
402	36,42
403	48,384
404	60,233
405	29,797
406	30.47
407	23.611
408	92.871
409	112.287
410	111.417
411	38.315
412	44,863
413	109.396
414	40,739
415	93,136
416	79,273
417	33,561

Idontificação	Extenção do sivo (m)
	Extensão do eixo (m)
<u> </u>	10,002
419	19,301
420	10,915
421	59 751
422	31 078
423	83.640
424	270 717
425	186.475
420	100,475
427	28 822
420	33 796
429	82 002
430	31 603
431	15 249
432	61 686
433	38.098
435	6.475
435	6 187
430	220.064
438	41.403
430	65.005
439	162 652
440	18 175
441	33 169
443	41 309
443	114 518
445	76 741
446	75,957
447	20 374
448	95.286
449	40.932
450	26 591
451	24,782
452	85.043
453	104 202
454	90.785
455	162 78
456	6.544
457	78.764
458	29.186
459	149 917
460	17.258
461	45.79
462	43,773
463	15.839
100	,000