
1Terr@Plural, Ponta Grossa, v.18, p. 1-27, e2423225, 2024.

DOI: 10.5212/TerraPlural.v.18.2423225.014

Spatio-temporal Distribution of Aboveground Forest Biomass 
and Carbon in Tropical Dry Forest under Anthropogenic 

Pressure, Brazil

Distribuição espaço-temporal da biomassa e carbono florestal 
acima do solo em Floresta Tropical Seca sob pressão antrópica, 

Brasil

Distribución espacio-temporal de la biomasa y el carbono 
forestal sobre el suelo en Bosque Tropical Seco bajo presión 

antropogénica, Brasil

Gabriela Salami*

https://orcid.org/0000-0003-4419-302X 
gabriela.salami@ufersa.edu.br

Universidade Federal Rural do Semi-Árido, 
UFERSA, Mossoró, RN, Brazil

Rinaldo Luiz Caraciolo Ferreira
https://orcid.org/0000-0001-7349-6041

rinaldo.ferreira@ufrpe.br
Universidade Federal Rural de Pernambuco, 

UFRPE, Recife, PE, Brazil

José Antônio Aleixo da Silva
https://orcid.org/0000-0003-0675-3524

jaaleixo@gmail.com
Universidade Federal Rural de Pernambuco, 

UFRPE, Recife, PE, Brazil

Fernando José Freire
https://orcid.org/0000-0002-3264-712X

fernando.freire@ufrpe.br
Universidade Federal Rural de Pernambuco, 

UFRPE, Recife, PE, Brazil

Emanuel Araújo Silva
https://orcid.org/0000-0003-0711-5954
emanuel.araujo@ufrpe.br
Universidade Federal de Santa Maria, UFSM, 
Frederico Westphalen, RS, Brazil

Marco Antonio Diodato
https://orcid.org/0000-0003-4419-302X
diodato@ufersa.edu.br
Universidade Federal Rural do Semi-Árido, 
UFERSA, Mossoró, RN, Brazil

Dhonatan Diego Pessi
https://orcid.org/0000-0003-0781-785X
dhonatan.pessi@gmail.com
Universidade Federal de Rondonópolis, UFR, 
Rondonópolis, Mato Grosso, Brazil

*	 R.L.C.F., J.A.A.S., F.J.F., and E.A.S. conceived the research; E.A.S. and G.S. collected the data; G.S. and D.D.P. per-
formed the statistical analysis; G.S. and M.A.D. wrote the text; all authors discussed the results and commented on 
the manuscript.

https://orcid.org/0000-0003-4419-302X
mailto:gabriela.salami@ufersa.edu.br
https://orcid.org/0000-0001-7349-6041
mailto:rinaldo.ferreira@ufrpe.br
https://orcid.org/0000-0003-0675-3524
mailto:jaaleixo@gmail.com
https://orcid.org/0000-0002-3264-712X
mailto:fernando.freire@ufrpe.br
https://orcid.org/0000-0003-0711-5954
mailto:emanuel.araujo@ufrpe.br
https://orcid.org/0000-0003-4419-302X
mailto:diodato@ufersa.edu.br
https://orcid.org/0000-0003-0781-785X
mailto:dhonatan.pessi@gmail.com


2 Terr@Plural, Ponta Grossa, v.18, p. 1-27, e2423225, 2024.

Gabriela Salami; et al.

Abstract: The present study aimed to characterize the spatiotemporal variability of 
aboveground biomass and carbon in two fragments of Dry Tropical Forest in the 
Brazilian semi-arid region using the kriging interpolation technique. One fragment 
experienced vegetation suppression for alternative land use, while the other had 
no history of use or wood extraction. The vertices of 80 plots (20 m x 20 m) were 
georeferenced, and biomass and carbon were estimated using allometric equations 
adjusted for Caatinga species. Spatial analyses and mapping of aboveground biomass 
and carbon were performed using GS+ software, with semivariograms fitted using 
spherical, exponential, and Gaussian models. The research aims to fill gaps regarding 
the impacts of inadequate forest exploitation in Dry Tropical Forests, specifically on 
the spatiotemporal distribution of biomass and carbon, as anthropogenic pressure 
can cause significant environmental degradation, resulting in reduced stocks. This 
investigation seeks to elucidate these dynamics and provide insights for management 
and conservation strategies based on robust empirical data, in addition to answering the 
following questions: Does the history of anthropogenic interventions in Dry Tropical 
Forest areas cause variations in the spatial distribution of biomass and carbon stocks 
that can be detected by the kriging method? Which attributes related to conservation 
and anthropogenic use reflect the spatial distribution of biomass and carbon stocks in 
Dry Tropical Forest areas? The results showed a strong spatial dependence of biomass 
and carbon stocks in both studied areas, indicating the influence of the areas’ use 
history. The conserved fragment presented a more homogeneous spatial distribution, 
suggesting that the selective and unauthorized wood extraction was dispersed 
throughout the area.
Keywords: Geostatistics, Kriging, Semi-arid, Interpolation Techniques.

Resumo: O presente trabalho teve como objetivo caracterizar a variabilidade espaço-
temporal da biomassa e do carbono acima do solo em dois fragmentos de Floresta 
Tropical Seca no semiárido brasileiro utilizando a técnica de interpolação por 
krigagem. Um fragmento sofreu supressão de vegetação para uso alternativo do 
solo, enquanto o outro não possui histórico de uso e extração de madeira. Foram 
georreferenciados os vértices de 80 parcelas (20 m x 20 m), e a biomassa e o carbono 
foram estimados utilizando equações alométricas ajustadas para espécies da caatinga. 
As análises espaciais e o mapeamento da biomassa aérea e do carbono foram 
realizados no software GS+, com semivariogramas ajustados usando os modelos 
esférico, exponencial e gaussiano. A pesquisa visa preencher lacunas sobre os impactos 
da exploração florestal inadequada na Floresta Tropical Seca, especificamente na 
distribuição espaço-temporal de biomassa e carbono, uma vez que a pressão antrópica 
pode causar degradação ambiental significativa, resultando na redução dos seus 
estoques. Esta investigação busca elucidar essas dinâmicas e fornecer subsídios para 
estratégias de manejo e conservação baseadas em dados empíricos robustos, além 
de responder às seguintes questões: O histórico de intervenções antrópicas em áreas 
de Floresta Tropical Seca provoca variações na distribuição espacial dos estoques de 
biomassa e carbono que possam ser constatados pelo método de krigagem? Quais 
atributos relacionados à conservação e ao uso antrópico refletem na distribuição 
espacial dos estoques de biomassa e carbono em áreas de Floresta Tropical Seca? Os 
resultados mostraram uma forte dependência espacial dos estoques de biomassa e 
carbono nas duas áreas estudadas, indicando a influência do histórico de uso das 
áreas. O fragmento considerado conservado apresentou uma distribuição espacial 
mais homogênea, sugerindo que a extração pontual e não autorizada de madeira foi 
seletiva e dispersa.
Palavras-chave: Geoestatística, Krigagem, Semiárido, Técnicas de interpolação.

Resumen: El presente estudio tuvo como objetivo caracterizar la variabilidad espacio-
temporal de la biomasa y el carbono por encima del suelo en dos fragmentos de Bosque 
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Tropical Seco en la región semiárida de Brasil utilizando la técnica de interpolación por 
krigaje. Un fragmento experimentó la supresión de la vegetación para uso alternativo 
del suelo, mientras que el otro no tenía historial de uso o extracción de madera. Se 
georreferenciaron los vértices de 80 parcelas (20 m x 20 m) y la biomasa y el carbono 
se estimaron utilizando ecuaciones alométricas ajustadas para especies de la Caatinga. 
Los análisis espaciales y el mapeo de la biomasa aérea y el carbono se realizaron 
utilizando el software GS+, ajustando los semivariogramas con modelos esféricos, 
exponenciales y gaussianos. La investigación tiene como objetivo llenar los vacíos en 
cuanto a los impactos de la explotación forestal inadecuada en los Bosques Tropicales 
Secos, específicamente en la distribución espacio-temporal de la biomasa y el carbono, 
ya que la presión antropogénica puede causar una degradación ambiental significativa, 
resultando en una reducción de los stocks. Esta investigación busca dilucidar estas 
dinámicas y proporcionar información para estrategias de manejo y conservación 
basadas en datos empíricos robustos, además de responder a las siguientes preguntas: 
¿El historial de intervenciones antropogénicas en áreas de Bosque Tropical Seco 
provoca variaciones en la distribución espacial de los stocks de biomasa y carbono que 
pueden ser detectadas por el método de krigaje? ¿Qué atributos relacionados con la 
conservación y el uso antropogénico reflejan la distribución espacial de los stocks de 
biomasa y carbono en áreas de Bosque Tropical Seco? Los resultados mostraron una 
fuerte dependencia espacial de los stocks de biomasa y carbono en ambas as áreas 
estudiadas, lo que indica la influencia del historial de uso de las áreas. El fragmento 
conservado presentó una distribución espacial más homogénea, lo que sugiere que la 
extracción selectiva y no autorizada de madera se dispersó por toda el área.
Palabras clave: Geoestadística, Kriging, Semiárido, Técnicas de interpolación.

INTRODUCTION

Half of the earth’s surface is covered by forests, with half dominated by Tropical 
Dry Forests (TDFs). The true original extent of these forests will likely never be known 
due to many being classified as disturbed areas (Murphy & Lugo, 1986). Despite their 
significance, dry forests are among the most threatened and least studied forest ecosystems 
globally (Blackie et al., 2014).

The United Nations General Assembly proclaimed the period until 2030 as the United 
Nations Decade on Ecosystem Restoration (UN, 2019). Resolution 73/284 identified six main 
areas of investment, several of which are directly related to tropical dry forest restoration, 
including resource mobilization, capacity building, scientific research and cooperation for 
ecosystem restoration at multiple scales. Integration of ecosystem restoration into policies 
and plans to address current national development is also emphasized. In response to 
this UN resolution, attention is drawn to the imperative of restoring a geographically, 
ecologically, and socioculturally significant biome - the Brazilian Caatinga, considered a 
tropical dry forest (Campo et al., 2023).

In Brazil, two important vegetation formations are classified as TDF: the Caatinga 
and part of the Cerrado biome vegetation. Together, they constitute nearly 33.80% of the 
Brazilian territory (IBGE, 2004). The Caatinga, located in the semi-arid region of Brazil, 
is the largest and one of the most diverse nuclei of the TDF in Latin America (Dexter et 
al., 2018; Sunderland et. al., 2015). This neotropical biome exhibits a disjunct distribution 
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and is strongly marked by climatic seasonality, characterized by low annual rainfall, an 
ephemeral herbaceous stratum and high diversity and endemism of Leguminosae (Costa 
et al., 2015). The species are morphophysiologically adapted to withstand long periods of 
drought, through deciduous and high regrowth capacity by stumps and roots (Gariglio 
et al., 2010). Although many are still native, they exist in different stages of regeneration 
due to anthropization actions (Araújo Filho et al., 2018).

Forests play a crucial role in the global carbon cycle (Anderegg et al., 2013; Bonan, 
2008; Lin et al., 2022). In terrestrial ecosystems, plants contain 90% of biomass carbon and 
80% of soil carbon (Landsberg & Gower, 1997; Lin et al., 2022). Consequently, forested areas 
are considered vital carbon sinks in terrestrial ecosystems, which can absorb carbon dioxide 
from the atmosphere, convert it into organic carbon, store it in plants, and contribute to 
clean air (Chen et al., 2017; Lin et al., 2022).

Forests also play a role in regulating microclimates and mitigating the greenhouse 
effect, underscoring their importance in the context of climate change. Through long-
term research, it has been determined that global forests can absorb approximately 2.4 
billion tons of carbon from the atmosphere annually (Pan et al., 2011; Lin et al., 2022). 
Consequently, sustainable forest management is currently recognized as one of the most 
effective methods to address global warming (FAO, 2015).

Traditionally, plant productivity has been directly estimated by measuring biomass 
and aboveground cover, a process demanding significant human, financial and time 
resources. To address this challenge, the use of biomass estimates from remote sensing 
products is emerging as a valuable tool applicable to large-scale studies (Pessi et al., 2023; 
Yu et al., 2018). 

Within the realm of forest dynamics studies, a technique gaining popularity is spatio-
temporal interpolation, associated with geostatistics. This approach has the potential to 
elucidate the spatial performance of dendrometric variables (Pelissari et al., 2014), tree 
spacing, sampling configuration in forest inventories (Rufino et al., 2006; Oda-Souza et al., 
2008; Mello et al., 2009), and the spatio-temporal dynamics of vegetation cover over the 
years (Pessi et al., 2023, Pessi et al., 2022). There is mounting evidence that spatial structure 
is a characteristic inherent in these variables and cannot be adequately identified using 
classical statistics alone, leading to a loss of information (Pereira et al., 2011; Rosa Filho et 
al., 2011; Pelissari et al., 2013). 

Native forests result from the co-evolution of various factor over time and space. The 
spatial dependence of forest variables mirrors the occupation and utilization of available 
spaces in the environment. This is influenced by different levels of competition, the form 
and type of architecture, location quality, distance between trees and openings in the forest, 
among other factors (Amaral et al., 2013).

The aim of this study was to examine and represent the spatio-temporal distribution 
of individuals of species within a remnant of Tropical Dry Forest of the Caatinga biome that 
has experienced anthropogenic pressure, utilizing geostatistics and kriging interpolation. 
Therefore, to assess the state of the forest altered by anthropogenic pressures, we hypothesized 
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that inadequate forest exploitation contributes to the reduction of biomass and carbon 
stocks, directly influencing the spatio-temporal distribution of forest species.

MATERIAL AND METHODS

Field of study

The study area is situated in the municipality of Floresta-PE, Brazil (Figure 1). The 
investigation was conducted in two sampling units with different conservation histories, 
each totaling 1.6 ha: Area 1 - The most recent clear-cutting in the area occurred in 1987 (34 
years without intervention), referred to as less conserved area (LCA); and Area 2 – With no 
recent major interventions on record, it is classified as conserved vegetation and referred 
to as the conserved area (CA).

Figure 1: Image of the location of the study area (Itapemirim Farm) in the municipality of Floresta, State 
of Pernambuco, Brazil. 

According to the Köppen climate classification, the region experiences a BS’h type 
climate, indicating a hot semi-arid climate with total annual rainfall ranging between 100 
and 600 mm (Alvares et al., 2013). The average annual air temperature in the hinterland 
can exceed 26 °C (Embrapa, 2000). Rainfall is concentrated from January to May, with 
March and April being the wettest months, and many years have recorded below-average 
rainfall (Apac, 2017). The vegetation is classified as shrubby steppe savanna - Caatinga 
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(Ibge, 2012) and the soil of the region is characterized as chromic luvisol, being shallow 
and typically abrupt in texture (Embrapa, 2011).

The study’s history outlines the establishment and monitoring of 80 plots since 
2008 in two areas with distinct land use histories. Each plot measures 20 m by 20 m (400 
m²), spaced 80 m apart during installation, with 50 m at the edges. Forty (40) plots were 
allocated to each area, totaling 3.2 ha of the sampled area.

The first area, named LCA (Figure 2A), is located near a state highway and has a 
history of land use involving the complete clearing of vegetation with the help of chains 
until 1987, followed by total abandonment. The second area, CA (Figure 2B), is considered 
conserved as there are no records of vegetation exploitation in the area, reinforcing its 
state of conservation. In CA, only the removal of forest by-products (stakes, posts, beams, 
among others) for occasional fence maintenance occurs, which does not interfere with the 
area’s patterns and dynamics, as these activities are sporadic and occasional. Each area 
covers approximately 50 hectares and is predominantly grazed by animals, mainly goats.

Figure 2: Aerial image of the two study areas, LCA in letter A and CA in letter B, located at Fazenda 
Itapemirim, in the municipality of Floresta, State of Pernambuco, Brazil.

Sampling and data collection

At the installation of the plots in 2008, all individuals with a circumference of 
1.30 m from the ground (CAP) and ≥ 6 cm were identified and marked. Throughout the 
study years (2008, 2013, and 2018), height and CAP measurements were conducted for 
all individuals meeting the inclusion criteria. Both newly recruited individuals, reaching 
the minimum CAP stipulated in the remediation years, and deceased individuals were 
recorded and added to the database.

The selection of these specific intervals (2008, 2013 and 2018) was influenced by the 
Caatinga’s response time to extreme drought event that occurred between 2012 and 2015 
(Marengo et al., 2016). By choosing a previous period (2008-2013), a subsequent interval 
(2013-2018) and a total of ten years, we aimed to comprehensively assess the vegetation’s 
response in each area based on its history of use in the face of the effects of drought.
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Biomass and carbon stock and balance in vegetation

In the Caatinga, species exhibit  the characteristic of emitting multiple stems. Therefore, 
in this study, bifurcations below 0.30 m in height were considered as a single individual. To 
estimate the biomass stock of the study area, the allometric equations adjusted by Dalla Lana 
et al. (2018) for eight species of the Caatinga were used. Additionally, a general equation, 
based on a forest inventory conducted in the conserved area (CA) in 2013, was employed. 
The selected species and equations are presented in Table 1. The selected species, by the 
authors, due to their representativeness, collectively accounting for over 90% of the total 
density in the area. Carbon stock was estimated using the conversion factors described 
by Dalla Lana et al. (2019).

Table 1: Equations for estimating the dry biomass stock for eight tropical dry forest species.

Species Equations  
Anadenanthera colubrina var. cebil (Griseb.) Altschul   =48.7255*[1-exp(-0.1435*DAP)]2.4096 (1) 
Aspidosperma pyrifolium Mart.   =0.7858*(DAP²*H)0.4550 (2) 
Bauhinia cheilantha (Bong.) Steud.   =0.0669*(DAP2.2115)*(H0.8155) (3) 
Cnidoscolus quercifolius Pohl   =0.6064*(DAP1.4216) (4) 
Croton heliotropiifolius Kunth  =0.1868*(DAP1.2764)*(H0.9401) (5) 
Mimosa Ophthalmocenters Mart. ex Benth.  ln =1.1118+1.7371*lnDAP-0.9536*lnH  (6) 
Mimosa tenuiflora (Willd.) Poir.   =0.5084*(DAP1.7121) (7) 
Poincianella bracteosa (Tul.) L.P.Queiroz   =6.6205+0.0341*(DAP²*H) (8) 

General Equation ln     = −1.2884+1.6102* ln( DAP)+0.4343*ln(H)  (9) 
  = estimated total dry biomass aboveground (kg); DBH* = diameter at 1.30 m aboveground (cm) and H 

= total height (m). *DAP=CAP/̟. 
Source: Dalla Lana et al. (2018). 

 

Spatio-temporal distribution of biomass and carbon stock

To survey the 80 plots, a Trimble Catalyst Digital Antenna connected to a smartphone 
device was used, capable of tracking L1/GPS L2C signals. Coordinates were collected with 
submetric precision (0.3 to 0.75 m).

Using the field-collected coordinates, tables were generated for each sampling unit, 
incorporating data on forest variables (Number of individuals, Number of stems, DBH, 
height [H], biomass and carbon). These tables were organized into a Microsoft Excel 
2016 spreadsheet (Microsoft® Corporation, 2016). Descriptive statistics (mean, median, 
mode, variance, standard deviation, coefficient of variation) were calculated for the data 
and imported into GS + software version 7.0. The software was utilized for variographic 
analysis, cross-validation and data interpolation (GS+, 2000).

A preliminary trend analysis was conducted to assess the influence of external factors 
on the dataset of the study area in all directions, considering potential edge effects on the 
forest fragment. To configure this analysis, a scatter plot was created with X (longitude) 
and Y (latitude) against Z (dry biomass and carbon) attributes. Semivariograms were 
constructed in the 0°, 45º, 90º and 135º directions with an angular tolerance of 45º to evaluate 
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anisotropy and select the experimental semivariogram with the longest range or isotropy 
for each variable. The theoretical semivariogram models tested in the GS+ Geostatistics 
software (GS+, 2000) are listed in Table 2.

Table 2: Geostatistical models used in the selection of experimental semivariograms.

Models 

Spherical γ(h) = β0+ β1 * + εi for h < A1,5  
 − 0,5  

 
   γ(h) = [β0+ β1] +     εi     for h ≥ A  

(10) 

Exponential γ(h) = β0 + β1 * + εi1 −  − 
 (11) 

Gaussian γ(h) = β0 + β1 * + εi1 −  −3 ∗ 
 (12) 

Where: γ(h) = semivariance, β0 = nugget effect, β1 = plateau, β2 = range, h = distance between 
two sampling points, ei = sampling error. 

 

In this analysis, it was assumed that the data exhibit spatial dependence (Krempi, 
2004). Following the adjustment of theoretical models, the nugget coefficients (C0) were 
obtained. This coefficient represents the variability, randomness and probabilistic error 
of the theoretical semivariogram models adjusted to the experimental semivariogram of 
the analyzed attribute. The level (C0 + C1) and the spatial dependence range (A) were 
submitted to spatial dependency analysis using the Spatial Dependency Advisor (Zimback, 
2001). To visualize the distribution of the variable in the graph, IDW (Inverse Distance 
Weighting) interpolation was applied, generating heat plots via interpolation.

Once the theoretical semivariogram models were adjusted, the kriging step was 
performed using its estimator, represented by the following expression (Equation 13):

Ẑ = ∑  
  Equation 13 

 
Where: Ẑx0 is the estimate of the value at position X0; n is the number of neighboring 
sampling points used to predict the unsampled value (kriging neighborhood); λ1i  are the 
i-th weights assigned to each i-th observation of the variables Z1i (observed variable).

Cross-validation was conducted for all sampling points. To determine the optimal 
semivariogram model, we considered the sum of the residual squares (SQR), the standard 
deviation (SD) and the alignment between the actual and estimated data lines in the cross-
validation. It’s crucial to emphasize that the user sensitivity is more significant than the 
values obtained during the adjustment process. Attempts at adjustment should be made, 
even if they result in a change in the R2 value (Coefficient of Determination) and an increase 
in the SQR value (Guimarães, 2004). It’s important to note that the model with the lowest 
nugget effect may not always be the one that best fits the data through cross-validation 
(Ortiz, 2002).

The selection of the best-fitted model for the semivariogram was guided by 
considerations of the lowest SQR, the R² and the cross-validation parameters derived from 
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the regression adjustment between observed values and those predicted by the model. 
Once the model was adjusted, data interpolation was performed using the Kriging method. 
This method assigns weights to unsampled points based on the data from neighboring 
points, considering the spatial variability expressed in the semivariograms.

The classification of the degree of spatial dependence (PD) was based on the ratio 
between the contribution (C) and the level (C0 + C). It was categorized as strong for PD 
greater than 75%, moderate for values between 25 and 75% and weak for PD less than 
25%. This classification scheme was proposed by Cambardella et al. (1994) in their studies 
on soil attributes.

RESULTS AND DISCUSSION

The values obtained for the mode, representing the highest observed frequency, 
were higher in the CA for the years 2008 and 2013. However, in the year 2018, the mode 
value remained similar only for the number of stems (Table 3). 

Position measures, which serve as central tendency indicators, are subject to the 
influence of extreme values (maximum value - V. Max and minimum value - V. Min.), 
directly impacting the values of the mean, median and mode.

Table 3: Descriptive statistics of the number of individuals and stems per hectare, and carbon stock, 
based on the different land use histories of the area (LCA - Less Conserved Area and CA - Conserved 

Area) for the three years of evaluation in a fragment of tropical dry forest in the semi-arid region, Floresta 
municipality, State of Pernambuco, Brazil.

Nind.ha-1

Area Year Avg. With. Mode V.Max V.Min S2 SD Asy. Kurt. CV

CA
2008 55.28 54.00 54.00 99.00 27.00 350.26 18.72 0.20 -0.15 0.34
2013 49.93 48.00 46.00 84.00 20.00 247.71 15.74 0.37 -0.03 0.32
2018 34.03 13.00 29.00 60.00 13.00 152.38 12.34 0.49 -0.60 0.36

LCA
2008 26.13 22.50 3.00 106.00 1.00 480.67 21.92 0.50 2.86 0.84
2013 29.65 21.00 3.00 148.00 2.00 831.93 28.84 0.90 6.02 0.97
2018 23.55 16.00 8.00 84.00 3.00 394.51 19.86 1.14 0.46 0.84

Nstem.ha-1

Area Year Avg. With. Mode V.Max V.Min S2 SD Asy. Kurt. CV

CA
2008 152.15 148.50 116.00 283.00 76.00 2026.90 45.02 0.24 1.22 0.30
2013 138.78 134.50 143.00 231.00 53.00 1486.59 38.56 0.33 0.14 0.28
2018 85.03 82.50 62.00 173.00 35.00 1306.38 36.14 0.21 0.67 0.43

LCA
2008 70.53 61.50 82.00 217.00 3.00 2411.44 49.11 0.55 1.02 0.70
2013 80.83 66.50 17.00 249.00 3.00 3959.38 62.52 0.68 0.80 0.78
2018 65.43 61.00 68.00 241.00 8.00 2188.05 46.78 0.28 3.56 0.71

continue
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Biomass (Kg)
Area Year Avg. With. Mode V.Max V.Min S2 SD Asy. Kurt. CV

CA
2008 1144.63 1071.09 - 2082.65 403.59 112852.82 335.94 0.66 1.61 0.29

2013 1110.65 1075.47 - 1745.47 260.25 90713.59 301.19 0.35 0.54 0.27
2018 762.96 749.10 - 1380.53 195.99 89503.56 299.17 0.14 -0.42 0.39

LCA

2008 350.00 304.95 - 1522.23 19.02 69001.99 262.68 0.51 9.22 0.75

2013 457.15 402.44 - 1819.57 21.88 100114.21 316.41 0.52 7.64 0.69

2018 527.26 474.75 - 2011.37 33.29 124670.71 353.08 0.45 6.76 0.67

Carbon (Kg)
Area Year Avg. With. Mode V.Max V.Min S2 SD Asy. Kurt. CV

CA
2008 520.96 491.38 - 954.36 185.40 23239.26 152.44 0.58 1.67 0.29
2013 504.19 487.54 - 789.12 119.81 18356.26 135.49 0.37 0.57 0.27
2018 345.90 339.53 - 623.84 89.92 18191.89 134.88 0.14 -0.42 0.39

LCA
2008 158.05 138.58 - 685.40 8.82 14025.11 118.43 0.49 9.12 0.75
2013 206.56 182.32 - 819.26 10.15 20380.18 142.76 0.51 7.51 0.69
2018 238.39 214.68 - 905.89 14.97 25413.15 159.42 0.45 6.62 0.67

Where: Avg. = average; Med. = median; V. Max. = Maximum value; V. min. = Minimum value; S² - 
Variance; SD = standard deviation; Asy. = Asymmetry; kurt. = kurtosis; CV - Coefficient of Variation; 

Nind.ha-1 = number of individuals per hectare; Nstem.ha-1 = number of stems per hectare.

For the variables Nind.ha-1 and Nstem.ha-1, the mean and median values closely 
aligned for the years 2008 and 2013, suggesting that the central point of the analyzed values 
is like the arithmetic mean of the variables studied, with no marked discrepancies. This 
indicates a normal distribution of the data, a pattern not observed for the year 2018. In 
2018, the mean and median exhibited distant values, and this observation is also applying 
to carbon and biomass stocks.

As for asymmetry and kurtosis, both areas displayed negative and positive values, 
some significantly deviating from the central value of zero, as observed in the mean and 
median. According to Guimarães et al. (2010), these values do not signify a significant 
departure from normality; rather, they illustrate that natural distributions often deviate 
from a perfect normal distribution.

The results revealed that the variables exhibit a moderate to high coefficient of 
variation (CV) based on parameters established in numerous studies with various types 
of forest crops (Fu et al., 2015; Benítez et al., 2016), resulting in values surpassing 30%. 
Among these, the highest values were observed in the LCA for all the variables, regardless 
of the evaluation year. This is likely attributed to the historical exploitation of the area, 
coupled with the forest’s current state characterized by disturbance and anthropization. 
These factors contribute to structural variation, with individuals of different sizes reflecting 
the regeneration rate and irregular disposition in the sampled area, thus presenting 
heterogeneity in the sampling.

The emergence of high coefficients of variation in the spatial distribution analysis 
may also be attributed to a low sampling effort, leading to less accurate estimates. The 

conclusion
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heterogeneity of an environment, influenced by location variations, determines the 
development of individuals. Less variability is expected within small plots, while between 
plots this variability can increase, consequently elevating the values of the coefficient of 
variation (Péllico Netto, 1997). This observation is consistent with the findings of Kershaw 
et al. (2017), who indicated that small sample plots in small homogeneous forests can result 
in high coefficients of variation.

Regarding the number of individuals per hectare (Table 4), spatial dependence 
ranged from moderate to strong, except for the years 2008 and 2013 in the CA where the 
spatial dependence was weak. Conversely, for the number of stems per hectare, strong 
spatial dependence was observed for all years, except for 2013 in the LCA. Biomass and 
carbon stocks exhibited strong spatial dependence for all evaluated years, regardless of 
the area’s history of use. Since the condition for the use of kriging is that the data exhibit 
moderate to strong spatial dependence (Yamamoto & Landim, 2015), the results are 
deemed satisfactory.

Table 4: Semivariographic parameters for the number of individuals and stems per hectare based on 
different degrees of anthropic disturbance (LCA - Less Conserved Area and CA - Conserved Area) in a 

fragment of tropical dry forest in the semi-arid region, Floresta municipality, State of Pernambuco, Brazil.

Less Conserved Area – LCA
Variable Year Model C0 C0+C R (m) R² SRS C/C0+C SD
Nind.ha-1 2008 Gaussian 248.00 496.10 578.33 0.95 777.00 0.50 M

2013 Gaussian 1.00 636.00 254.44 0.88 37597.00 0.99 S
2018 Gaussian 250.65 337.37 344.96 0.23 10434.00 0.26 M

Nstem.ha-1 2008 Gaussian 1.00 2370.00 199.01 0.80 777.00 1.00 S
2013 Gaussian 3610.39 3610.39 344.96 0.08 918734.00 0.00 In
2018 Gaussian 1.00 1952.00 212.69 0.84 491585.00 0.99 S

Biomass (kg) 2008 Exponential 100.00 57700.00 94.80 0.05 1.85E+08 0.99 S
2013 Gaussian 100.00 88160.00 170.08 0.89 2.30E+08 0.99 S
2018 Gaussian 100.00 111600.00 172.34 0.90 3.37E+08 0.99 S

C (kg) 2008 Exponential 10.00 11740.00 94.20 0.05 7708500.0 0.99 S
2013 Gaussian 10.00 17990.00 170.95 0.90 9589618.0 0.99 S
2018 Gaussian 10.00 22810.00 173.21 0.91 1.41E+07 1.00 S

Conserved Area – CA
Nind.ha-1 2008 Linear 327.99 392.72 401.16 0.12 17689.00 0.16 In

2013 Linear 216.57 284.01 401.16 0.20 9348.00 0.24 In
2018 Gaussian 0.10 154.40 154.33 0.79 2284.00 0.99 S

Nstem.ha-1 2008 Spherical 1.00 1954.00 86.60 0.14 236704.00 0.99 S
2013 Gaussian 1.00 1486.00 108.95 0.83 61734.00 0.99 S
2018 Gaussian 1.00 1219.00 173.72 0.88 125430.00 0.99 S

Biomass (kg) 2008 Spherical 100.00 105100.0 61.90 0.00 3.67E+08 0.99 S
2013 Exponential 7400.00 88420.00 69.00 0.05 3.67E+08 0.92 S
2018 Exponential 2100.00 96490.00 437.70 0.75 6.48E+08 0.98 S

C (kg) 2008 Exponential 690.00 21760.00 62.10 0.05 1.49E+07 0.97 S
2013 Exponential 1279.00 17950.00 80.40 0.11 1.49E+07 0.93 S
2018 Exponential 290.00 19530.00 431.70 0.75 2.67E+07 0.98 S

Where: C0 = nugget effect; C0+C = level; C/(C0+C) = structure or spatial proportion; R = range; R2 = 
coefficient of determination e SRS = sum residual squares; SD = spacial dependence; W = weak; M = 

moderate; S = strong; Nind.ha-1 = number of individuals per hectare; Nstem.ha-1 = number of stems per 
hectare; Bio = Aerial biomass; C = Carbon.
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As proposed by Kravchenko et al. (2006), higher values of spatial dependence 
indicate a more robust spatial structure and greater precision in mapping properties using 
geostatistical techniques like kriging. The observed spatial dependencies underscore the 
need to move beyond classical statistics, where observations are considered random and 
spatially independent, and adopt spatial analyses that take account for relationships with 
neighboring observations (Correia et al., 2014).

The mean spatial range (R) for all variables consistently exceeded the distance 
between the plots, except for biomass in 2008 and 2013 (61.90 and 69.00 m, respectively) 
and carbon stock in 2008 in CA (62.10 m). When the spatial range falls between plots (80.00 
m), the use of geostatistical models for these variables is precluded. This is because samples 
taken at distance greater than the intervals are not correlated, indicating a lack of spatial 
variability (Zimmermann et al., 2008). The highest range was observed in 2008 in the LCA 
for Nind.ha-1 (578.33 m), demonstrating that this attribute has the lowest variability and 
the greatest spatial continuity, ensuring greater precision in the estimates at unsampled 
locations.

Alternatively, an exceptionally long range exhibits linear behavior, indicating the 
presence of the infinite dispersibility. This suggests that the size of the sampled field was 
insufficient to capture the entire variance (Vieira et al., 2008). A longer range implies 
a greater dependence among neighboring points, potentially leading to more accurate 
estimates for geostatistics with fewer samples. Lundgren et al. (2016) emphasize the 
significance of the range as it assists other studies of the same attribute in determining 
the spacing between samples.

The CA exhibited lower variation in the variables compared to the LCA, with the 
exception of biomass and carbon stock in 2018 and Nind.ha-1 in 2013. This indicates that 
the LCA has larger patches of variability between sample points, a finding consistent 
with the results of Guedes et al. (2015) who studied the spatial continuity of dendrometric 
characteristics in eucalyptus stands over time.

Concerning the nugget effect (C0), Chiles and Delfiner (1999) report that high values 
may be attributed to structures with a shorter range than the minimum distance between 
two surveyed points. As show in Table 4, for the Gaussian model of Nind.ha-1 in 2008 
(LCA), the nugget effect corresponds to 50.00% of the threshold, indicating that half of the 
variability was explained by the spatial correlation, while the rest was considered random. 
This analysis is important because a higher proportion of nugget effect can negatively 
impact Kriging estimates. The assumption is that lower similarity between neighbors 
and less continuity of the phenomenon lead to impaired Kriging estimation. For most of 
the models evaluated, the proportion was high, showing that the Kriging estimation was 
compromised.

The precise factors influencing this result cannot be definitively determined due 
to the research design and sampling approach. It is believed that factors such as the age 
of the areas, anthropic disturbance and preservation time may contribute to an increased 
nugget effect. According to Kanegae Júnior et al. (2007), competition between plants can 
affect the spatial relationship between sampled units.



13Terr@Plural, Ponta Grossa, v.18, p. 1-27, e2423225, 2024.

Spatio-temporal distribution of aboveground forest biomass and carbon in tropical dry forest under 
anthropogenic pressure, brazil

Despite most variables exhibiting strong SD, many encountered interpolation challenges. 
The semivariograms displayed few points in the ascending region of the adjustment line 
(Figures 3 and 4), or did not exhibit an ascending line at all, indicating a significant nugget 
effect. In cross-validation, substantial discrepancies were observed at the extremes of the 
data amplitude between the interpolated and actual values (Figures 5 and 6).

Figure 3: Semivariograms of Biomass (kg) – Bio and Carbon (kg) – C stocks, in a less conserved area of 
Tropical Dry Forest (Caatinga) (LCA) for the years 2008, 2013 and 2018.
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Figure 4: Semivariograms of Biomass (kg) – Bio and Carbon stock (kg) – C, in a conserved area of Tropical 
Dry Forest (Caatinga) (CA) for the years 2008, 2013 and 2018.
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Figure 5: Cross-validation of Biomass (kg) – Bio and Carbon stock (kg) – C, in a less conserved area of 
Tropical Dry Forest (Caatinga) (LCA) for the years 2008, 2013 and 2018.
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Figure 6: Cross-validation of the stock of Biomass (kg) – Bio and Carbon stock (kg) – C, in a conserved 
area of Tropical Dry Forest (Caatinga) (CA) for the years 2008, 2013 and 2018. (a) biomass; (b) carbon.

’
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Disturbed forest areas may pose challenges to the use of geostatistics. While they 
present a strong SD, continuity issues may arise due to clearings within the area (Amaral, 
2010). This phenomenon is evident in the LCA, where patches of vegetation-free areas are 
observed. These patches result from intense exploitation before 1987, extensive grazing by 
goats and sheep, and climatic events such as persistent droughts and high temperatures, 
which hinder the natural regeneration of the area.

In the thematic maps obtained for the LCA (Figures 7 and 8), the color gradient varies 
from light blue to light purple, representing lower and higher concentrations, respectively. 
These maps clearly illustrate regions with the highest concentrations of biomass and carbon 
stocks in kilograms within the two study areas for each assessment year.

Figure 7: Thematic maps of the stock of Biomass (kg) - Bio and Carbon stock (kg) - C, in a less conserved 
area of Tropical Dry Forest (Caatinga) (LCA) for the years 2008, 2013 and 2018.
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Figure 8: Thematic maps of Biomass (kg) – Bio and Carbon stock (kg) – C, in a conserved area of Tropical 
Dry Forest (Caatinga) (CA) for the years 2008, 2013 and 2018.
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For the LCA, there was an increase in the number of individuals, as depicted in the 
blue-shaded area in Figure 7. This increase is likely associated with the interior of the plot, 
where the removal of wood may have been less intense due to accessibility challenges in 
cutting and transporting wood. The most significant change was observed between 2008 
and 2013, reveling a more homogeneous distribution in the blue-shaded area. The spatial 
distribution of the number of stems is more homogeneous, with higher values in 2008. 
However, in 2013 and 2018, there was a higher concentration of stems in the study area. This 
observation underscores that the increase in the number of individuals in a more uniform 
manner resulted in a higher number of stems. Regarding biomass and carbon stocks, the 
maps clearly delineate regions with the highest stock in the study area, predominantly 
located further inland. The spatial distribution mirrors that of the number of stems.

For the CA, the distribution of individuals and stems is more homogeneous, giving 
the challenging and remote access to this site, making illegal logging difficult, though not 
impossible. There was a reduction in the number of individuals and stems in the area, 
with this reduction showing a homogeneous distribution between the years 2008 and 
2013 and becoming more pronounced between 2013 and 2018, as depicted in the green-
shaded area in Figure 8. This map illustrates a greater prevalence of blue spots in the area 
during the latter period. Although there was also a reduction in the number of stems over 
the evaluated period, their spatial distribution exhibited greater homogeneity between 
2008 and 2013. However, in 2018, a higher number of stems (blue spots) were spatially 
concentrated in specific points. 
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The maps depicting the spatial distribution of biomass and carbon stocks clearly 
indicate that, despite the decrease in values, there has been a greater homogenization over 
the years, with values consistently higher than the average. Their spatial distributions 
follow in a pattern like the number of stems.

When comparing the data for Nind-1, Nstems-1 (Table 4) in relation to carbon stocks, 
it becomes evident that these stocks are primarily influenced by the number of stems rather 
than the number of individuals. This fact can be attributed to the distinctive characteristic 
of Caatinga species, where some may not necessarily have the highest number of stems. 
This is in line with the greater number of individuals in the areas, indicating that certain 
species exhibit a greater capacity to produce stems, whether new or resprouted.

Tropical Dry Forests serve as crucial repositories of forest carbon, contributing 
significantly to the Earth’s carbon sink and as a key indicator of ecosystem stability 
(Franklin et al., 2002; Yang et al., 2017). As a representative of the tropical dry forest of the 
Caatinga, the observed changes in forest carbon stocks within the study areas reflect, to a 
certain extent, the variability in carbon stock influenced by factors such as mismanagement 
(LCA) resulting from human interventions. Such mismanagement can lead to significant 
reductions in carbon stocks. Therefore, gaining insights into and predicting the spatial and 
temporal distribution of carbon stocks in tropical dry forest, while implementing proper 
management practices to avoid drastic decreases, are essential steps for optimizing forest 
resource management. This approach can enhance the carbon sequestration potential in 
this arid region, contributing to the mitigation the adverse effects of climate change and 
associated impacts.

CONCLUSION

- Despite the reduction in the number of individuals and stems, biomass and carbon 
stocks showed smaller variations, highlighting the impact of the area’s historical use on 
its resilience and maintenance.

- Over the evaluated period, there was an increase in carbon and biomass stocks in 
the less conserved area. This increase can be attributed to higher cellular activity in younger 
forests compared to mature ones. Conversely, the reduction in conversed area is linked 
to the maturity of individuals, leading to a decrease in increment and the elimination of 
smaller diameter stems.

- In the less conserved area, over the 10-year period, aerial biomass is functioning 
as a carbon fixer, effectively increasing its stocks within this timeframe.

- In the area considered conserved, over the same 10-year period, it cannot be 
definitively stated that it acts as a carbon source based solely on the reduction in aerial 
biomass stocks, as the carbon content in the soil has not been studied.

- The biomass and carbon stocks exhibit strong adjustments in the semivariograms, 
meeting the requirements for a satisfactory estimate. This enables the creation of thematic 
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maps due to the spatial dependence of their stocks, which are influenced by the area’s 
history of use and preservation time.
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