INFLUÊNCIA DE PRÉ-TRATAMENTOS NA PRODUÇÃO DE CAROTENOIDES EM MEIO AGROINDUSTRIAL POR SPORODIOBOLUS PARAROSEUS
Resumo
Os carotenoides podem ser obtidos por processos químicos ou biologicamente por micro-organismos, com destaque para Sporidiobolus pararoseus, apresentando crescente interesse nesta via de obtenção em função da grande aplicabilidade desses biocompostos. Esta levedura é promissora para cultivos submersos, apresentando fácil assimilação de coprodutos agroindustriais, fontes alternativas de carbono e nitrogênio, usados como substratos nos meios de produção. Neste estudo, avaliou-se o uso de um pré-tratamento químico (ácido sulfúrico ou fosfórico) ou físico (carvão ativo) nos substratos alternativos para a bioprodução de carotenoides, usando a S. pararoseus. Nas condições de processo a 25 ºC, 180 rpm em 168 h com o meio de produção agroindustrial 40 g/L de melaço de cana de açúcar e 6,5 g/L de água de maceração de milho pré-tratado com ácido sulfúrico foi possível alcançar 936,35 µg/L (79.63 µg/g) de carotenoides totais, 12,02 g/L de biomassa e produtividade em carotenoide (Pc) de 5,57 µg/L.h (0.47 µg/g.h). A bioprodução de carotenoides alcançou 812,32 µg/L (72,35 µg/g), 11,27 g/L de biomassa e Pc de 4,83 µg/L.h (0,43 µg/g.h) para ácido fosfórico. Portanto, os pré-tratamentos com ácido sulfúrico e ácido fosfórico nos substratos agroindustriais foram promissores e promoveram incrementos superiores a 55% e 79% na concentração de carotenoides totais, respectivamente.
Referências
AI, H.; LIU, M.; YU, P.; ZHANG, S.; SUO, Y.; LUO, P.; LI, S. & WANG, J. Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses. Carbohydrate Polymers Vol. 129, p.35–43, 2015.
AOAC. Official Methods of Analysis of AOAC International. 19th ed. USA: Association of Official Analysis Chemists International., 2012.
ARSAD, M.; HUSSAIN, T.; IQBAL, M. & ABBAS, M. Enhanced ethanol production at commercial scale from molasses using high gravity technology by mutant S. cerevisiae. Brazilian Journal of Microbiology Vol. 48, n.3, p.403–409, 2017.
BERWANGER, A.L.S.; DOMINGUES, N.M.; VANZO, L.T.; LUCCIO, M.; TREICHEL, H.; PADILHA, F.F. & SCAMPARINI, A.R.P. Production and rheological characterization of biopolymer of Sphingomonas capsulata ATCC 14666 using conventional and industrial media. Applied biochemistry and biotechnology Vol. 129–132, p.942–50, 2006.
CHENG, Y.T. & YANG, C.F. Using strain Rhodotorula mucilaginosa to produce carotenoids using food wastes. Journal of the Taiwan Institute of Chemical Engineers Vol. 61, p.270–275, 2016.
CIPOLATTI, E.; BULSING, B.; SÁ, C.S.; BURKERT, C.A.V.; FURLONG, E.B. & BURKERT, J.F.M. Carotenoids from Phaffia rhodozyma: Antioxidant activity and stability of extracts. African Journal of Biotechnology Vol. 14, n.23, p.1982–1988, 2015.
COLET, R.; URNAU, L.; BAMPI, J.; ZENI, J.; DIAS, B.B.; RODRIGUES, E.; JACQUES, R.A.; LUCCIA, M.D. & VALDUGA, E. Use of low-cost agro products as substrate in semi-continuous process to obtain carotenoids by Sporidiobolus salmonicolor. Biocatalysis and Agricultural Biotechnology Vol. 11, p.268–274, 2017.
DAVIES, B.H. Chemistry and Biochemistry of Plant Pigments. In: GOODWIN, T. (Ed.). Carotenoids. London: Academic Press, p.38–165, 1976.
DESHMUKH, A.N.; GOKHALE, P.N. & JAIN, R. Engineering of Bacillus subtilis for the Production of 2,3-Butanediol from Sugarcane Molasses. Applied Biochemistry and Biotechnology Vol. 179, n.2, p.321–331, 2016.
EZEJIOFOR, T.; ENEBAKU, U.E. & OGUEKE, C. Waste to Wealth-Value Recovery from Agro-food Processing Wastes Using Biotechnology: A Review. British Biotechnology Journal Vol. 4, n.4, p.418–481, 2014.
FARIAS, F.O.; ALBERTI, A.; NOGUEIRA, A. & DEMIATE, I.M. Mixture design applied to the study of bioethanol production from cheese whey and corn steep liquor. Brazilian Journal of Food Research Vol. 7, n.3, p.150, 2016.
FEKETEA, G. & TSABOURI, S. Common food colorants and allergic reactions in children: Myth or reality?. Food Chemistry Vol. 230, p.578–588, 2017.
FILLET, S.; GIBERT, J.; SUÁREZ, B.; LARA, A.; RONCHEL, C. & ADRIO, J.L. Fatty alcohols production by oleaginous yeast. Journal of Industrial Microbiology & Biotechnology, Vol. 42, n.11, p.1463–1472, 2015.
FONSECA, R. & RAFAEL, R.D.S. Different cell disruption methods for astaxanthin recovery by Phaffia rhodozyma. African Journal of Biotechnology, Vol. 10, n.7, p.1165–1171, 2011.
FRENGOVA, G.; SIMOVA, E.; PAVLOVA, K. & GRIGROVA, D. Formation of carotenoids by Rhodotorula glutinis in whey ultrafiltrate. Biotechnology and bioengineering Vol. 44, n.8, p.888–94, 1994.
GAO, Y. & YUAN, Y.J. Comprehensive quality evaluation of corn steep liquor in 2-keto-L-gulonic acid fermentation. Journal of Agricultural and Food Chemistry Vol. 59, n.18, p.9845–9853, 2011.
HAN, M.; DU, C.; XU, Z.Y.; QIAN, E. & ZHANG, W.G. Rheological properties of phosphorylated exopolysaccharide produced by Sporidiobolus pararoseus JD-2. International Journal of Biological Macromolecules Vol. 88, p.603–613, 2016.
HOU, J. & CUI, H.L. In vitro antioxidant, antihemolytic, and anticancer activity of the carotenoids from Halophilic archaea. Current Microbiology Vol. 75, n.3, p.266–271, 2018.
KAUR, A.; GUPTA, V.; CHRISTOPHER, A.F.; MALIK, M.A. & BANSAL, P. Nutraceuticals in prevention of cataract – An evidence based approach. Saudi Journal of Ophthalmology Vol. 31, n.1, p.30–37, 2017.
KAYAHAN, E.; EROGLU, I. & KOKU, H.A. Compact tubular photobioreactor for outdoor hydrogen production from molasses. International Journal of Hydrogen Energy Vol. 42, n.4, p.2575–2582, 2017.
KONOPACKA, D.; CYBULSKA, J.; ZDUNEK, A.; DYKI, B.; MACHLAŃSKA, A. & CELEJEWSKA, K. The combined effect of ultrasound and enzymatic treatment on the nanostructure, carotenoid retention and sensory properties of ready-to-eat carrot chips. LWT - Food Science and Technology Vol. 85, p.427–433, 2017.
KULCZYŃSKI, B.; MICHALOWSKA, A.G.; CISOWSKA, J.K. & KMIECIK, D. The role of carotenoids in the prevention and treatment of cardiovascular disease – Current state of knowledge. Journal of Functional Foods Vol. 38, p.45–65, 2017.
KUSDIYANTINI, E.; GAUDIN, P.; GOMA, G. & PHILIPPE, J.B. Growth kinetics and astaxanthin production of Phaffia rhodozyma on glycerol as a carbon source during batch fermentation. Biotechnology Letters Vol. 20, n.10, p.929–934, 1998.
LOPES, N.A.; REMEDI, R.D.; SANTOS, S.C.; BURKERT, C.A.V. & BURKERT, J.F.M. Different cell disruption methods for obtaining carotenoids by Sporodiobolus pararoseus and Rhodothorula mucilaginosa. Food Science and Biotechnology Vol. 26, n.3, p.759–766, 2017.
MACHADO, W. R. C. & BURKERT, J. F. M. Optimization of agroindustrial medium for the production of carotenoids by wild yeast Sporidiobolus pararoseus. African Journal of Microbiology Research Vol. 9, n.4, p.209–219, 2015.
MANOWTTANA, A.; TECHAPUN, C.; WATANBE, M. & CHAIYASO, T. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor. Journal of Bioscience and Bioengineering, Vol. 125, n.1, p.59–66, 2018.
MARKETS e MARKETS. Carotenoids Market by Type (Astaxanthin, Beta-Carotene, Canthaxanthin, Lutein, Lycopene, & Zeaxanthin), Source (Synthetic and Natural), Application (Supplements, Food, Feed, and Cosmetics), & by Region - Global Trends & Forecasts to 2021. Disponível em: <https://www.marketsandmarkets.com/Market-Reports/carotenoid-market-158421566.html>. Acesso em: 24 out. 2018.
MICHELON, M.; MATOS, B.T.; SILVA, R.R.; BURKERT, C.A.V. & BURKERT, J.F.M. Extraction of carotenoids from Phaffia rhodozyma: A comparison between different techniques of cell disruption. Food Science and Biotechnology Vol. 21, n.1, p.1–8, 2012.
MISCHOPOULOU, M. NAIDIS, P.; KALAMARAS, S.; KOTSOPOULOS, T.A. & SAMARAS, P. Effect of ultrasonic and ozonation pretreatment on methane production potential of raw molasses wastewater. Renewable Energy Vol. 96, p.1078–1085, 2016.
NASCIMENTO, W.C.A.; SILVA, C.R.; CARVALHO, R.V. & MARTINS, M.L.L. Optmization of a culture medium for protease production by Bacillus sp. thermophilic. Food Science and Technology Vol. 27, n.2, p.417–421, 2007.
NIU, F.X.; LU, Q.; BU, Y.F. & LIU, J.Z. Metabolic engineering for the microbial production of isoprenoids: Carotenoids and isoprenoid-based biofuels. Synthetic and Systems Biotechnology Vol. 2, n.3, p.167–175, 2017.
PAN, N.C., PEREIRA, H.C.B., SILVA, M.L.C.; VASCONCELOS, A.F.D.; & CELLIGOI, M.A.P.C. Improvement production of hyaluronic acid by Streptococcus zooepidemicus in sugarcane molasses. Applied Biochemistry and Biotechnology Vol. 182, n.1, p.276–293, 2017.
PARAJÓ, J.C.; SANTOS, V. & VÁZQUEZ, M. Optimization of carotenoid production by Phaffia rhodozyma cells grown on xylose. Process Biochemistry Vol. 33, n.2, p.181–187, 1998.
RIOS, D.A.S.; BORBA, T.M.; KALIL, S.J. & BURKERT, J.F.M. Rice parboiling wastewater in the maximization of carotenoids bioproduction by Phaffia rhodozyma. Ciência e Agrotecnologia Vol. 39, n.4, p.401–410, 2015.
ROOHBAKHSH, A.; KARIMI, G. & IRANSHAHI, M. Carotenoids in the treatment of diabetes mellitus and its complications: A mechanistic review. Biomedicine & Pharmacotherapy, Vol. 91, p.31–42, 2017.
ROUKAS, T. Pretreatment of beet molasses to increase pullulan production. Process Biochemistry Vol. 33, n.8, p. 805–810, 1998.
SARIOL, H.C.; YPERMAN, J.; SAUVANELL, A.B.; CARLEER, R.; CAMPA, J.N. & GRYGLEWICZ, G. A novel acoustic approach for the characterization of granular activated carbons used in the rum production. Ultrasonics Vol. 70, p.53–63, 2016.
SGUAREZI, C.M.; LONGO, C.; CENI, G.; BONI, G.; SILVA, M.F.; LUCCIO, M.; MAZUTTI, M.A.; MAUGERI, F.; RODRIGUES, M.I. & TREICHEL, H. Inulinase production by agro-industrial residues: optimization of pretreatment of substrates and production medium. Food and Bioprocess Technology Vol. 2, n.4, p.409–414, 2009.
SILVA, C.M.; BORBA, T.M.; KALIL, S.J. & BURKERT, J.F.M. Raw glycerol and parboiled rice effluent for carotenoid production: Effect of the composition of culture medium and initial pH. Food Technology and Biotechnology Vol. 54, n.4, p.489–496, 2016.
TASKIN, M.; ORTUCU, S.; AYDOGAN, M.N. & ARSLAND, N.P. Lipid production from sugar beet molasses under non-aseptic culture conditions using the oleaginous yeast Rhodotorula glutinis TR29. Renewable Energy Vol. 99, p.198–204, 2016.
VALDUGA, E.; VALÉRIO, A.; TREICHEL, H. & LUCCIO, M. Pré-tratamentos de melaço de cana-de-açúcar e água de maceração de milho para a bioprodução de carotenóides. Química Nova Vol. 30, n.8, p.1860–1866, 2007.
VALDUGA, E.; RIBEIRO, A. H., R.; CÊNCIA, K.; COLET, R.; TINGGEMANN, L.; ZENI, J. &TONIAZZO, G. Carotenoids production from a newly isolated Sporidiobolus pararoseus strain using agroindustrial substrates. Biocatalysis and Agricultural Biotechnology Vol. 3, n.2, p.207–213, 2014.
VECINO, X.L.; PEREIRA, L.B; REY, R.D.; CRUZ, J.M. &MOLDES, A.B. Optimization of liquid–liquid extraction of biosurfactants from corn steep liquor. Bioprocess and Biosystems Engineering Vol. 38, n.9, p.1629–1637, 2015.
WANG, D.; JU, X.; ZHOU, D. & WEI, G. Efficient production of pullulan using rice hull hydrolysate by adaptive laboratory evolution of Aureobasidium pullulans. Bioresource Technology Vol. 164, p.12–19, 2014a.
WANG, F.; HU, J.H.; GUO, C. & LIU, C.Z. Enhanced laccase production by Trametes versicolor using corn steep liquor as both nitrogen source and inducer. Bioresource Technology Vol. 166, p.602–605, 2014b.
XIA, W.; CHEN, W.; PENG, W. F. & LI, K. T. Industrial vitamin B12 production by Pseudomonas denitrificans using maltose syrup and corn steep liquor as the cost-effective fermentation substrates. Bioprocess and Biosystems Engineering Vol. 38, n.6, p.1065–1073, 2015.
YOO, A.Y.; ALNAEELI, M. & PARK, J.K. Production control and characterization of antibacterial carotenoids from the yeast Rhodotorula mucilaginosa AY-01. Process Biochemistry Vol. 51, n.4, p.463–473, 2016.
YU, X.J.; YU, Z.Q.; LIU, Y. L.; SUN, J.; Zheng, J.Y. & WANG, Z. Utilization of high-fructose corn syrup for biomass production containing high levels of docosahexaenoic acid by a newly isolated Aurantiochytrium sp. YLH70. Applied Biochemistry and Biotechnology Vol. 177, n.6, p.1229–1240, 2015.
ZHENG, H.; MA, X.; GAO, Z.; WAN, Y.; MIN, M.; ZHOU, W.; LI, Y.; LIU, Y. HUANG, H.; CHEN, P. &RUAN, R. Lipid production of heterotrophic Chlorella sp. from hydrolysate mixtures of lipid-extracted microalgal biomass residues and molasses. Applied Biochemistry and Biotechnology Vol. 177, n.3, p.662–674, 2015.
Downloads
Publicado
Edição
Seção
Licença
Este obra está licenciado com uma Licença Creative Commons Atribuição 4.0 Internacional.